Skip to main content
Log in

Study of the volume fraction, temperature, and pressure dependence of the resistivity in a ceramic-polymer composite using a general effective media theory equation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A quantitative general effective media (GEM) equation is used to describe quantitatively the resistivity of an Fe3O4-epoxy composite system over a large range of volume fractions in terms of the resistivities of each component and two percolation morphology parameters. One parameter is the critical (percolation) volume fraction, φc, and the other is an exponent,t. Preliminary models, also based on the GEM equation, are used to describe the positive temperature coefficient of resistivity (PTC) and the piezoresistivity (uniaxial pressure) of the composite when the composition is near the percolation threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Medalia,Rubber Chem. Technol. 59 (1987) 432.

    Google Scholar 

  2. R. Zallen, in “The Physics of Amorphous Solids” (Wiley, New York, 1983) Ch. 4.

    Google Scholar 

  3. R. Landauer, in “Electrical Transport and Optical Properties of Inhomogeneous Media”, American Institute of Physics Conference Proceedings no. 40, edited by J. C. Garland and D. B. Tanner (American Institute of Physics, New York, 1978) p. 2.

    Google Scholar 

  4. J. P. Straley, in “Percolation Processes and Structures”, Vol. 5, in the Annals of the Israel Physical Society, edited by G. Deutscher, R. Zallen and J. Adler (Israel Physical Society, Jerusalem, Israel, 1983) p. 353.

    Google Scholar 

  5. D. S. McLachlan,J. Phys. C 20 (1987) 865.

    Google Scholar 

  6. N. Deprez, D. S. McLachlan andI. Sigalas,Solid State Commun. 66 (1988) 869.

    Google Scholar 

  7. D. S. McLachlan andJ. P. Burger,ibid. 65 (1988) 159.

    Google Scholar 

  8. D. S. McLachlan,Jpn J. Appl. Phys. 26 Suppl. 26–3 (1987) 901.

    Google Scholar 

  9. Idem, Solid State Commun. 69 (1989) 925.

    Google Scholar 

  10. Idem, J. Phys. C 21 (1988) 1521.

    Google Scholar 

  11. P. N. Sen, C. Scala andM. H. Cohen,Geophys. 46 (1981) 781.

    Google Scholar 

  12. R. E. Meredith andC. W. Tobias, in “Advances in Electrochemistry and Electrochemical Engineering”, Vol. 2, edited by C. W. Tobias (Interscience, New York, 1962) p. 15.

    Google Scholar 

  13. S. Yoshikawa, T. Ota, R. Newnham andA. Amin,J. Amer. Ceram. Soc. 73 (1990) 263.

    Google Scholar 

  14. M. Blaszkiewicz, D. S. McLachlan andR. E. Newnham,Polym. Sci. Enqng, in press.

  15. A. Malliaris andD. T. Turner,J. Appl. Phys. 42 (1971) 614.

    Google Scholar 

  16. R. P. Kusy,ibid. 48 (1978) 5301.

    Google Scholar 

  17. J. Gurland,Trans. Met. Soc. AIME 236 (1966) 642.

    Google Scholar 

  18. D. S. McLachlan, M. Blaszkiewicz andR. E. Newnham,J. Amer. Ceram. Soc. 73 (1990) 2187.

    Google Scholar 

  19. F. Carmona, R. Canet andP. Delhaes,J. Appl. Phys. 61 (1987) 2550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaszkiewicz, M., McLachlan, D.S. & Newnham, R.E. Study of the volume fraction, temperature, and pressure dependence of the resistivity in a ceramic-polymer composite using a general effective media theory equation. J Mater Sci 26, 5899–5903 (1991). https://doi.org/10.1007/BF01130131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130131

Keywords

Navigation