Skip to main content
Log in

The influence of vanadium on fracture toughness and abrasion resistance in high chromium white cast irons

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of vanadium on wear resistance under low-stress conditions and on the dynamic fracture toughness of high chromium white cast iron was examined in both the ascast condition and after heat treatment at 500 °C. A vanadium content varying from 0.12 to 4.73% was added to a basic Fe-C-Cr alloy containing 2.9 or 19% Cr. By increasing the content of vanadium in the alloy, the structure became finer, i.e. the spacing between austenite dendrite arms and the size of massive M7C3 carbides was reduced. The distance between carbide particles was also reduced, while the volume fraction of eutectic M7C3 and V6C5 carbides increased. The morphology of eutectic colonies also changed. In addition, the amount of very fine M23C6 carbide particles precipitated in austenite and the degree of martensitic transformation depended on the content of vanadium in the alloy. Because this strong carbide-forming element changed the microstructure characteristics of high chromium white iron, it was expected to influence wear resistance and fracture toughness. By adding 1.19% vanadium, toughness was expected to improve by approximately 20% and wear resistance by 10%. The higher fracture toughness was attributed to strain-induced strengthening during fracture, and thereby an additional increment of energy, since very fine secondary carbide particles were present in a mainly austenitic matrix. An Fe-C-Cr-V alloy containing 3.28% V showed the highest abrasion resistance, 27% higher than a basic Fe-C-Cr alloy. A higher carbide phase volume fraction, a finer and more uniform structure, a smaller distance between M7C3 carbide particles and a change in the morphology of eutectic colonies were primarily responsible for improving wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Zum Gahr andD. V. Doane,Metall. Trans. A 11A (1980) 613.

    Google Scholar 

  2. R. W. Durman,Foundry Trade J. 134 (1973) 645.

    Google Scholar 

  3. W. Fairhurst andK. Röhrig,Foundry Trade J. 136 (1974) 685.

    Google Scholar 

  4. F. Maratray andA. Poulalion,AFS Trans. 90 (1982) 795.

    Google Scholar 

  5. R. H. Frost, T. Majewski andG. Krauss,AFS trans. 94 (1986) 297.

    Google Scholar 

  6. R. Blickensderfer, J. H. Tylezak andF. Dodd, in Proceedings of the Conference on Wear of Materials 1983, 11–14. April 1983 (ASME, Reston, Va.) p. 471.

    Google Scholar 

  7. S. Turenne, F. Lavallée andJ. Masounave,J. Mater. Sci. 24 (1988) 3021.

    Google Scholar 

  8. J. M. Tong, Y. Z. Zhou, T. Y. Shen andH. J. Deng,Wear,135 (1990) 217.

    Google Scholar 

  9. D. K. Subramanyam,AFS Trans. 93 (1985) 763.

    Google Scholar 

  10. L. I. Agapova, T. S. Vetrova andA. A. Zhukov,Metalloved. Term. Obrab. Met. 5 (1982) 55.

    Google Scholar 

  11. W. L. Guesser,Foundry Manage. Tech. 9 (1985) 50.

    Google Scholar 

  12. H. K. Baik andC. R. Loper,AFS Trans. 96 (1988) 405.

    Google Scholar 

  13. C. R. Loper andH. K. Baik,AFS Trans. 97 (1989) 1001.

    Google Scholar 

  14. J. A. R. Gregolin andH. G. Alcantara,J. Mater. Sci. Lett. 10 (1991) 751.

    Google Scholar 

  15. D. M. Stefanescu andS. Cracium,Fonderie 32 (1977) 51.

    Google Scholar 

  16. Q. D. Zhou andQ. C. Rao, in Proceedings of the 55th International Foundry Congress, Moskva, 1988, p.1.

  17. P. Dupin andJ. M. Schissler,AFS Trans. 92 (1984) 355.

    Google Scholar 

  18. A. Sawamoto, K. Ogi andK. Matsuda,AFS Trans. 94 (1986) 403.

    Google Scholar 

  19. J. V. Dawson,Brit. Foundryman 75 (1982) 134.

    Google Scholar 

  20. H. Sh. Shadrov, L. G. Korshunov andV. P. Cheremnikh,Metalloved. Term. Obrab. Met. 4 (1983) 33.

    Google Scholar 

  21. Standard Practice for Conducting Dry Sand/Rubber Wheel Abrasion Tests, ASTM, G65-80 (ASTM, Philadelphia, 1980).

  22. K. U. Kumar, P. Gundappa, B. M. Pramila Bai, K. A. Natarajan andS. K. Biswas,Tribology Int. 22 (1989) 219.

    Google Scholar 

  23. Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM, E 399-90 (ASTM, Philadelphia, 1991).

  24. M. Radulovic, PhD thesis, University of Belgrade, Belgrade (1991).

    Google Scholar 

  25. J. L. Chermant, M. Coster andJ. Lavole,Pract. Metall. 18 (1981) 392.

    Google Scholar 

  26. P. H. Crepean, A. M. Gokhale andC. W. Meyers,JOM 41 (1989) 16.

    Google Scholar 

  27. B. Lou andB. L. Averbach,Metall. Trans. A 14A (1983) 1899.

    Google Scholar 

  28. J. S. Sun, in Proceedings of the Conference on Wear of Materials 1983 (ASME, Reston, Va., 1983) 79.

    Google Scholar 

  29. J. T. H. Pearce,AFS Trans. 92 (1984) 599.

    Google Scholar 

  30. I. R. Sare,Metals Technol. 6 (1979) 412.

    Google Scholar 

  31. N. F. Fiore, K. C. Antony andT. H. Kosel, in Proceedings of the Conference on Corrosion-Erosion-Wear of Materials in Emerging Fossil Energy Systems, Berkeley, CA, USA, 27–29 Jan. (1982) p. 266.

  32. K. H. Zum Gahr,Z. Metallkde. 71 (1980) 103.

    Google Scholar 

  33. P. H. Crepeau, S. D. Antolovich andG. A. Calboreanu,AFS Trans. 94 (1986) 503.

    Google Scholar 

  34. A. Wang, U. J. De Souza andH. J. Rack,Wear 151 (1991) 157.

    Google Scholar 

  35. H. J. Rack, U. J. De Souza andA. Wang,Wear 159 (1992) 121.

    Google Scholar 

  36. M. Fiset, K. Peev andM. Radulovic,J. Mater. Sci. Lett. 12 (1993) 615.

    Google Scholar 

  37. P. A. Morten, R. B. Gundlach andJ. Dodd,AFS Trans. 93 (1985) 879.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radulovic, M., Fiset, M., Peev, K. et al. The influence of vanadium on fracture toughness and abrasion resistance in high chromium white cast irons. J Mater Sci 29, 5085–5094 (1994). https://doi.org/10.1007/BF01151101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151101

Keywords

Navigation