Skip to main content
Log in

Anodic film formation on high strength aluminium alloy FVS0812

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Barrier-type film growth on the high strength aluminium alloy FVS0812 has been studied by a combination of transmission electron microscopy and Rutherford backscattering spectroscopy. The film is composed mainly of amorphous anodic alumina, but is contaminated with iron species incorporated into the film from the alloy. The film may also be contaminated with silicon and vanadium species at levels below the detection limit of the present experiments. The contaminant species are primarily incorporated locally into the film during oxidation of Al13(Fe, V)3Si dispersoids and the resulting film material is of reduced resistivity compared with anodic alumina of high purity. As a consequence of the presence of regions of film material of differing resistivities, the film is of irregular thickness. The average thickness corresponds to a nm/V ratio of about 1.3. Iron species incorporated into the film migrate outwards at roughly 2.1 times the rate of Al3+ ions. The iron species are not ejected in significant amounts to the electrolyte on reaching the film/electrolyte interface and hence, a thin layer of film material highly enriched in iron species develops at the film surface. The layer may also be enriched in vanadium species, if these are incorporated into the film and migrate more rapidly than Al3+ ions. Enrichment of iron, and possibly other alloying element atoms, is found in a thin layer of alloy immediately beneath the anodic film, paralleling enrichments of alloying element atoms found following anodic oxidation of other aluminium alloys. The enrichments at both the alloy/film and film/electrolyte interfaces do not appear to be continuous across the macroscopic surface of the specimens, probably due to the non-uniformity of film growth on the two-phase substrate. The maximum voltage for the selected conditions of anodizing was limited to 68 V as a result of oxygen generation at flaws which are present extensively in the anodic film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. ZEDALIS, D. RAYBOULD, D. J. SKINNER and S. K. DAS, in: “Processing of Structural Metals by Rapid Solidification”, Orlando, Florida, 69 Oct., 1986, edited by F. H. Froes and S. J. Savage, (American Society for Metals, Ohio, 1987) p. 347.

    Google Scholar 

  2. P. S. GILMAN, Metals and Mater. 8 (1990) 504.

    Google Scholar 

  3. S. C. THOMAS, V. I. BIRSS, D. STEELE and D. TESSIER, Microscopy Research and Technique bd31 (1995) 285.

    Article  Google Scholar 

  4. K. SHIMIZU, G. E. THOMPSON, G. C. WOOD and K. KOBAYASHI, J. Mater. Sci. Lett. 10 (1991) 709.

    Article  CAS  Google Scholar 

  5. R. C. FURNEAUX, G. E. THOMPSON and G. C. WOOD, Corros. Sci. 18 (1978) 853.

    Article  CAS  Google Scholar 

  6. L. R. DOOLITTLE, Nucl. Instrum. Meth. B 15 (1986) 227.

    Article  CAS  Google Scholar 

  7. J. C. CHEANG WONG, JIAN LI, C. ORTEGA, J. SIEJKA, G. VIZKELETHY and Y. LEMAITRE, ibid. B 64 (1992) 169.

    Article  CAS  Google Scholar 

  8. A. C. HARKNESS and L. YOUNG, Can. J. Chem. 44 (1966) 2409.

    Article  CAS  Google Scholar 

  9. K. SHIMIZU, G. E. THOMPSON and G. C. WOOD, Phil. Mag. B 64 (1991) 345.

    Article  Google Scholar 

  10. G. C. WOOD, P. SKELDON, G. E. THOMPSON and K. SHIMIZU, J Electrochem. Soc. 143 (1996) 74.

    Article  CAS  Google Scholar 

  11. W. D. MACKINTOSH, F. BROWN and H. H. PLATTNER, ibid. 121 (1974) 1281.

    Article  CAS  Google Scholar 

  12. F. BROWN and W. D. MACKINTOSH, ibid 120 (1973) 1096.

    Article  CAS  Google Scholar 

  13. L. YOUNG and D. J SMITH, ibid 126 (1979) 765.

    Article  CAS  Google Scholar 

  14. G. E. THOMPSON, Y. XU, P. SKELDON, K SHIMIZU, S. H. HAN and G. C. WOOD, Phil. Mag. B 55 (1987) 651.

    Article  Google Scholar 

  15. H. HABAZAKI, K. SHIMIZU, P. SKELDON, G. E. THOMPSON and G. C. WOOD, ibid B 74 (1996) 443.

    Google Scholar 

  16. H. HABAZAKI, M. A. PAEZ, K. SHIMIZU, P. SKELDON, G. E. THOMPSON, G. C. WOOD and X. ZHOU, Surf. Interface Anal. 23 (1995) 892.

    Article  CAS  Google Scholar 

  17. X. ZHOU, H. HABAZAKI, K. SHIMIZU, P. SKELDON, G. E. THOMPSON and G. C. WOOD, Corros. Sci. 38 (1996) 1563.

    Article  CAS  Google Scholar 

  18. J. P. S. PRINGLE, Electrochim. Acta 25 (1980) 1423.

    Article  CAS  Google Scholar 

  19. H. HABAZAKI, K. SHIMIZU, P. SKELDON, G. E. THOMPSON and G. C. WOOD, J. Electrochem. Soc. 143 (1996) 2465.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sykes, J., Thompson, G.E., Mayo, D. et al. Anodic film formation on high strength aluminium alloy FVS0812. Journal of Materials Science 32, 4909–4916 (1997). https://doi.org/10.1023/A:1018620123001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018620123001

Keywords

Navigation