Skip to main content
Log in

Experimental and theoretical aspects of the stabilization of zirconia.

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using the Rietveld method, phases of ceria-doped zirconia, calcined at temperatures of 600 and 900 °C, were quantitatively analysed for different concentrations of ceria. The results show that the stabilization of zirconia depends on the dopant concentration and calcination temperature. Moreover, the theoretical calculation using the ab initio Hartree–Fock–Roothaan method indicates that the most stable phases for ceria-stabilized zirconia are cubic or tetragonal, in accordance with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. H. Heuer and L. W. Hobbs, “Science and Technology of Zirconia, Advances in Ceramics”, Vol. 3 (American Ceramic Society, Columbus, OH, 1981).

    Google Scholar 

  2. D. K. Smith and H. W. Newkirk, Acta Crystallogr. 18 (1965) 963.

    Google Scholar 

  3. E. C. Subbarao, H. S. Maiti and K. K. Srivastava, Phys. Status Solidi A (1975) 21.

  4. R. C. Garvie, J. Phys. Chem. 82 (1978) 218.

    Google Scholar 

  5. C. J. Howard, R. J. Hill and B. E. Reichert, Acta Crystallogr. B44 (1988) 116.

    Google Scholar 

  6. R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature (London) 258 (1975) 703.

    Google Scholar 

  7. W. L. Roth, “Crystal Structure and Chemical Bonding in Inorganic Chemistry”, edited by C. J. Rooymans and A. Rabenay, (North-Holland, Amsterdam, 1975) p. 85–102.

    Google Scholar 

  8. Th. Proffen. R. B. Neder and F. Frey, Acta Crystallogr. B49 (1993) 599.

    Google Scholar 

  9. M. Morinaga, H. Adachi and M. Tsukada, J. Phys. Chem. Solids 44 (1983) 301.

    Google Scholar 

  10. W. Y. Ching, D. E. Ellis and D. J. Lam, Mater. Res. Soc. Symp. Proc. 8 (1987) 181.

    Google Scholar 

  11. R. E. Cohen, M. J. Mehl and L. L. Boyer, Physica B 1 (1988) 150.

    Google Scholar 

  12. F. Zandiehnadem and R. A. Murray, ibid. 150 (1988) 19.

    Google Scholar 

  13. H. J. F. Jansen and J. A. Gadner, Physica BCC 150 (1988) 10.

    Google Scholar 

  14. R. Orlando, C. Pisani, C. Roetti and E. Stefanovich, Phys. Rev. B 45 (1992) 592.

    Google Scholar 

  15. R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu and W. Y. Ching, ibid. 49 (1994) 5133.

    Google Scholar 

  16. R. J. Hill, C. J. Howard, J. Appl. Crystallogr. 20 (1987) 467.

    Google Scholar 

  17. R. A. Young, A. Kakthivel, T. S. Moss. C. O. Paiva-Santos, J. Appl. Cryst. 28 (1995) 366.

    Google Scholar 

  18. G. Caglioti, A. Paoletti and F. P. Ricci, Nucl. Instrum, 3 (1958) 223.

    Google Scholar 

  19. M. Dupuis, D. Sppangler and J. J. Wendoloski, “National Resource for Computations in Chemistry Software Catalog”, University of California at Berkeley, Program QG01, CA (1980).

  20. Y. Sakai, H. Tatemaki and S. Huzinaza, J. Comput. Chem. 3 (1982) 6.

    Google Scholar 

  21. S. Huzinaga, J. Andzelm, Klobukowski, E. Radzio-Andzelm, Y. Sakai and H. Tatewaki, “Gaussian basis sets for molecular calculations” (Elsevier, Amsterdam, 1984).

    Google Scholar 

  22. A. Dwivedi and A. N. Cormack, Philos. Mag. 61 (1990) 1.

    Google Scholar 

  23. M. Hillert and T. Sakuma, Acta Metall. Mater. 39 (1991) 1111.

    Google Scholar 

  24. M. Hillert, J. Am. Ceram. Soc. 74 (1991) 2005.

    Google Scholar 

  25. A. N. Cormack and S. C. Parker, ibid. 73 (1990), 3220.

    Google Scholar 

  26. E. V. Stefanovich and A. L. Shluger, Phys. Rev. B 49 (1994) 11560.

    Google Scholar 

  27. P. Li, I. Wei Chen and J. E. Penner Hahan, ibid. 48 (1993) 10063.

    Google Scholar 

  28. Idem. J. Am. Ceram. Soc. 77 (1994) 1281.

  29. J. AndrÉs, A. BeltrÁn, V. Moliner and E. Longo, J. Mater. Sci. 30 (1995) 4852.

    Google Scholar 

  30. C. R. Aita and C. K. Kwok, J. Am Ceram. Soc. 73 (1990) 3209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechepeche, A.P., Treu, O., Longo, E. et al. Experimental and theoretical aspects of the stabilization of zirconia.. Journal of Materials Science 34, 2751–2756 (1999). https://doi.org/10.1023/A:1004698026465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004698026465

Keywords

Navigation