Skip to main content
Log in

Microstructural evolution of titanium nitride (TiN) coatings produced by reactive ion beam-assisted, electron beam physical vapor deposition (RIBA, EB-PVD)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium nitride (TiN) coatings have been successfully deposited on 304 stainless steel substrates by reactive ion beam-assisted, electron beam-physical vapor deposition (RIBA, EB-PVD). The hardness values of the TiN coatings varied from 800 to 2500 VHN depending on the processing condition. The lattice parameter and hardness variation were correlated with processing parameters such as: deposition rate, bias, ion source energies, process gas, substrate temperature, and coating composition. The hardness of the TiN coatings increased with increasing ion energy. The ion energies combined with the deposition rate were the limiting factors controlling the degree of surface texturing. Surface texturing was only observed for those coatings deposited >8 Å/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hatschek, American Machinist (1983) 129–144.

  2. J. Sundgren, B. Johansson and S. Karlsson, Thin Solid Films 105 (1983) 353–366.

    Google Scholar 

  3. W. Sproul, Cutting Tool Engineering (1994) 52–57.

  4. D. Monaghan and K. Laing, Finishing 17 (11) (1993) 1–6.

    Google Scholar 

  5. J. Sundgren and L. Hultman, in “Materials and Processes for Surface and Interface Engineering,” edited by Y. Pauleau (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995) pp. 453–474.

    Google Scholar 

  6. S. Didziulis, J. Lince, T. Stewart and E. Eklund, Inorg. Chem. 33 (1994) 1979–1991.

    Google Scholar 

  7. A. Dunand, H. Flack and K. Yvon, Phys. Rev. B 31 (4) (1985) 2299–2315.

    Google Scholar 

  8. P. Blaha, J. Redinger and K. Schwarz, ibid. 31 (4) (1985) 2316–2325.

    Google Scholar 

  9. J. Sundgren, Thin Solid Films 128 (1985) 45–55.

    Google Scholar 

  10. N. Heide and J. Schultze, Nuclear Instruments and Methods in Physic Research B 80/81 (1993) 467–471.

    Google Scholar 

  11. R. Jaschek and C. Russel, J. Non-Cryst. Solids 135 (1991) 236–242.

    Google Scholar 

  12. Z. Cheng and J. Zhu, J. Mater. Res. 10 (4) (1995) 995–999.

    Google Scholar 

  13. W. Ensinger, Nuclear Instruments and Methods in Physics Research B 80/81 (1993) 1409–1414.

    Google Scholar 

  14. Y. Igasaki and H. Mitsuhashi, Thin Solid Films 70 (1980) 17–25.

    Google Scholar 

  15. W. Sinke, G. Frijlink and F. Saris, Appl. Phys. Lett. 47 (5) (1985) 471–473.

    Google Scholar 

  16. S. Schiller, G. Beister and W. Sieber, Thin Solid Films 111 (1984) 259–268.

    Google Scholar 

  17. J. Poitevin and G. Lemperiere, ibid. 97 (1982) 69–77.

    Google Scholar 

  18. K. Ahn, M. Wittmer and C. Ting, ibid. 107 (1983) 45–54.

    Google Scholar 

  19. S. Kanamori, ibid. 136 (1986) 215–227.

    Google Scholar 

  20. O. Johansen, J. Dontje and R. Zenner, ibid. 153 (1987) 75–82.

    Google Scholar 

  21. G. Hubler, D. Van Vechten, E. Donovan and R. Kant, Mat. Res. Soc. Symp. Proc. 128 (1989) 55–60.

    Google Scholar 

  22. B. Coll, Vide, Les Couches Minces 261 (1992) 309.

    Google Scholar 

  23. D. Nagy, in “American Society of Mechanical Engineers, Applied Materials Division,” edited by J. W. Wu (ASME, New York, 1992) pp. 1–7.

    Google Scholar 

  24. D. Rickerby and P. Burnett, Science of Ceramics 14, 793–798.

  25. R. Chowdhury, R. Vispute, K. Jagannadham and J. Narayan, J. Mater. Res. 11 (6) (1996) 1458–1469.

    Google Scholar 

  26. T. Wakabayashi, J. Williams and I. Hutchings, Surface and Coatings Technology 57 (1993) 183–189.

    Google Scholar 

  27. G. Sandhu, S. Meikle and T. Doan, Appl. Phys. Lett. 63 (3) (1993) 240–242.

    Google Scholar 

  28. T. Arai, H. Fujita and K. Oguri, Thin Solid Films 165 (1988) 139–148.

    Google Scholar 

  29. B. Karlsson, R. Shimshoch, B. Seraphin and J. Haygarth, Physica Scripta 25 (1982) 775–779.

    Google Scholar 

  30. F. Sequeda, J. Metals (1986) 55–65.

  31. J. Stimmell, J. Vac. Sci. Technol. B 4 (6) (1986) 1377–1382.

    Google Scholar 

  32. T. Brat, N. Parikh, N. Tsai, A. Sinha, J. Poole and C. Wickersham, ibid. 5 (6) (1987) 1741–1747.

    Google Scholar 

  33. G. Dixit, C. Wei, F. Liou and H. Zhang, Appl. Phys. Lett. 62 (4) (1993) 357–359.

    Google Scholar 

  34. S. Rohde, Y. Kim and R. Deangelis, J. Electronic Materials 22 (11) (1993) 1327–1330.

    Google Scholar 

  35. G. Mah, P. Mcleod and D. Williams, J.Vac. Sci. Technol. 11 (4) (1974) 663–665.

    Google Scholar 

  36. J. Hirvonen, Annu. Rev. Mater. Sci. 19 (1989) 401–417.

    Google Scholar 

  37. G. Wolf, J. Vac. Sci. Technol. A 10 (4) (1992) 1757–1764.

    Google Scholar 

  38. D. Mattox, Electrochemical Technology 2 (1964) 295–298.

    Google Scholar 

  39. W. Mader and H. Fischmeister, Thin Solid Films 182 (1989) 141–152.

    Google Scholar 

  40. W. Ensinger, R. Emmerich and B. Enders, in “Surface Modification Technologies IV,” edited by T. Sudarshan and D. Bhat (The Minerals, Metals & Materials Society, PA, 1993) pp. 859–880.

    Google Scholar 

  41. B. Haywood, Advanced Materials and Processes 12 (1990) 35–40.

    Google Scholar 

  42. J. Hirvonen, Materials Science Reports 6 (1991) 215–274.

    Google Scholar 

  43. Y. Nakagawa, S. Ohtani, T. Nakata, Mikoda and T. Takagi, Nuclear Instruments and Methods in Physics Research B 80/81 (1993) 1402–1405.

    Google Scholar 

  44. R. Bunshah, “Handbook of Deposition Technologies for Films and Coatings” (Noyes Publications, Park Ridge, NJ, 1994).

    Google Scholar 

  45. M. Hocking, “Metallic and Ceramic Coatings, Longman Scientific and Technical” (John Wiley & Sons Inc., 1989).

  46. D. Wolfe, Thesis 1996mWolfe DE, Penn State Universiy, 1996.

  47. S. Yamamoto and H. Ichimura, J. Mater. Res. 11 (5) (1996) 1149–1156.

    Google Scholar 

  48. H. Tompkins, J. Appl. Phys. 71 (1992) 980–983.

    Google Scholar 

  49. N. Saha and H. Tompkins, ibid. 72 (1992) 3072–3079.

    Google Scholar 

  50. W. Ensinger, Nuclear Instruments and Methods in Physics Research B 56/57 (1991) 648–651.

    Google Scholar 

  51. Y. Sakka, S. Ohno and M. Uda, J. Amer. Ceram. Soc. 75 (1) (1992) 244–248.

    Google Scholar 

  52. H. Tompkins, J. Appl. Phys. 70 (1991) 3876–3880.

    Google Scholar 

  53. C. Ernsberger, J. Nickerson and T. Smith, J. Vac. Sci. Technol. A 4 (6) (1986) 2784–2788.

    Google Scholar 

  54. L. Hultman, G. Hakansson, U. Wahlstrom and J. Sundgren, Thin Solid Films 205 (1991) 153–164.

    Google Scholar 

  55. J. Echigoya and Z. Liu, ibid. 198 (1991) 293–300.

    Google Scholar 

  56. V. Valvoda, J. Alloys and Compounds 219 (1995) 83–87.

    Google Scholar 

  57. C. Wild, N. Herres and P. Koidl, J. Appl. Phys. 68 (3) (1990) 973–976.

    Google Scholar 

  58. M. Kiuchi, A. Chayahara, Y. Horino, K. Fujii, M. Satou and W. Ensinger, Applied Surface Science 60/61 (1992) 760–764.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, D.E., Singh, J. Microstructural evolution of titanium nitride (TiN) coatings produced by reactive ion beam-assisted, electron beam physical vapor deposition (RIBA, EB-PVD). Journal of Materials Science 34, 2997–3006 (1999). https://doi.org/10.1023/A:1004668325924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004668325924

Keywords

Navigation