Skip to main content
Log in

Semiconducting and transport properties of mono- and polycrystalline nickel oxide

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

On the basis of high-temperature studies of electrical conductivity of poly- and monocrystalline nickel oxide and making use of the results of studies on chemical diffusion coefficients obtained by several authors and in the present work, the structure of point defects in nickel oxide has been considered. It has been shown that in the temperature range 900 to 1300° C and at the oxygen pressure from 10−4 to 1 atm there occur in nickel oxide singly- and doubly-ionized cationic vacancies in comparable quantities.

Assuming such to be the model of defect structure in Ni1−yO, the equilibrium concentration of cationic vacancies as a function of temperature has been calculated for the oxygen pressure of 1 atm. It has been shown that the results obtained are in good agreement with the results of direct determinations of concentration of cationic vacancies in NiO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Baumbach and C. Wagner, Z. physik. Chem. 24 (1934) 59.

    Google Scholar 

  2. C. Wagner, ibid 32 (1936) 447.

    Google Scholar 

  3. C. Wagner and K. Grunewald, ibid 40 (1938) 455.

    Google Scholar 

  4. C. Wagner, ibid 21 (1933) 25.

    Google Scholar 

  5. K. Hauffe, “Reaktionen in und an festen Stoffen” (Springer, Berlin, 1966) p. 187.

    Google Scholar 

  6. A. Bosman and H. Daal, Adv. Phys. 19 (1970) 1.

    Google Scholar 

  7. S. Mrowec and Z. M. Jarzebski, Oxidation of Metals 1 (1969) 267.

    Google Scholar 

  8. J. Dereń, Z. M. Jarzjebski, S. Mrowec, and T. Walec, Bull. Acad. Polon. Sci., Ser. Sci. Chim. 19 (1971) 147.

    Google Scholar 

  9. Idem, ibid 19 (1971) 153.

    Google Scholar 

  10. M. O'Keeffe and W. Moore, J. Phys. Chem. 65 (1962) 1438.

    Google Scholar 

  11. M. Volpe and J. Reddy, J. Chem. Phys. 53 (1970) 1117.

    Google Scholar 

  12. J. Choi and W. Moore, J. Phys. Chem. 66 (1962) 1308.

    Google Scholar 

  13. S. Klotzman, A. Timofiejew, and J. Trachtenberg, Fiz. Metall. 14 (1962) 91.

    Google Scholar 

  14. B. Wasiutyńskij and G. Kartmazow, ibid 15 (1963) 132.

    Google Scholar 

  15. K. Fueki and J. Wagner, J. Electrochem. Soc. 112 (1965) 384.

    Google Scholar 

  16. S. Mitoff, J. Chem. Phys. 35 (1961) 882.

    Google Scholar 

  17. D. Tretakiow and R. Rapp, Trans. AIME, 245 (1969) 1235.

    Google Scholar 

  18. H. Sockel and H. Schmalzried, Ber Bunsengesell, Phys. Chem. 72 (1967) 745.

    Google Scholar 

  19. S. Pizzini and R. Morlotti, J. Electrochem. Soc. 114 (1967) 1979.

    Google Scholar 

  20. R. Uno, J. Phys. Soc. Japan 22 (1967) 1502.

    Google Scholar 

  21. I. Bransky and N. Tallan, J. Chem. Physics 49 (1968) 1243.

    Google Scholar 

  22. J. Cox and C. Quinn, J. Mater. Sci. 4 (1969) 33.

    Google Scholar 

  23. N. G. Eror and J. B. Wagner, Phys. Stat. Solid 35 (1969) 641.

    Google Scholar 

  24. J. Price and J. B. Wagner, Z. Physik. Chem. N.F. 49 (1966) 257.

    Google Scholar 

  25. T. Smith, “Entalpies and Entropies for the Oxidation of Metals by the Cation Vacancy Mechanism”, Proceedings of Third International Congress on Metallic Corrosion Moscow Vol. 4 (1969) p. 69.

  26. S. Van Houten, Proceedings of International Conference on Semiconductors, Exeter, England (1962)

  27. F. Morin, Phys. Rev. 93 (1954) 1199.

    Google Scholar 

  28. M. Shim and W. Moore, J. Chem. Phys. 26 (1957) 802.

    Google Scholar 

  29. R. Lindner and A. Akerström, Discuss. Faraday Soc. 23 (1957) 133.

    Google Scholar 

  30. S. Tripp and N. M. Tallan, J. Amer. Ceram. Soc. 53 (1970) 531.

    Google Scholar 

  31. C. M. Osburn and R. W. Vest, J. Phys. Chem. Solids 32 (1971) 1343.

    Google Scholar 

  32. P. Shewmon, “Diffusion in Solids” (McGraw-Hill, New York, 1963).

    Google Scholar 

  33. J. Manning, “Diffusion Kinetics for Atoms in Crystals” (Van Nostrad Co, London, 1968).

    Google Scholar 

  34. J. Wagner, “Chemical Diffusion Coefficients for Some Nonstoichiometric Metal Oxides”, in “Mass Transport in Oxides” (J. B. Wachtman, Washington, 1968) p. 65.

    Google Scholar 

  35. P. E. Childs, L. W. Laub, and J. B. Wagner, Chemical Diffusion in Non-stoichiometric Compounds, Proceedings No. 19 of the British Ceramic Society.

  36. S. Mrowec and A. Stokłosa, Oxidation of Metals 3 (1971) 291.

    Google Scholar 

  37. J. Dereń, Z. Guzik, and J. Obłakowski, Zesz. Nauk. Akad. Górn-Hutn. Ceramics No. 17 (1971) 51 Kraków.

    Google Scholar 

  38. J. Słoczyński, Z. Kowalski, and T. Wójcikiewicz, J. Mater. Sci. 7 (1972) 1369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dereń, J., Mrowec, S. Semiconducting and transport properties of mono- and polycrystalline nickel oxide. J Mater Sci 8, 545–558 (1973). https://doi.org/10.1007/BF00550459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550459

Keywords

Navigation