Skip to main content
Log in

Phase Grating from Ordered Polymer Lattices for Optica Image Preprocessing

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The ‘inverted’ retina of the human eye can beemulated by multilayer gratings from polymer latexparticles located in the image plane of opticalsystems. This so called OPTO-RETINA provides v. Laueinterference patterns in visible light with atrichromatic characteristic containing,simultaneously, local spatiotemporal direction anddistance information, which are relevant to 3Dspatial vision and 4D spatiotemporal Fouriercorrelator-optical preprocessing in shape andmotion analysis.As a first step in the realization of OPTO-RETINAproperties the formation of hexagonally orderedmonolayers of polystyrene latex sphereswith diameters in the~μm range is reported and firstresults of diffraction and dispersion of white lightby these layers obtained by conoscopical opticalmicroscopy are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carbon, M.: Using diffraction theory of human vision for design of colour vision devices, SPIE Proceedings, Intelligent Robots and Computer Vision 13(1994), 550–560.

    Google Scholar 

  2. DeValois, K.K., DeValois, R.L. and Yund, E.W.: Responses of striate cortex cells to grating and checkerboard patterns, J. Physiol. 291(1979), 483–505.

    Google Scholar 

  3. Hopfield, J.J.: Pattern recognition computation using action potential timing for stimulus representation, Nature 376(1995), 33–36.

    Google Scholar 

  4. Lauinger, N.: 3D grating optics of human vision, Acta Ophthalmologica, Suppl. 69(1991), 199.

    Google Scholar 

  5. Lauinger, N.: The two axes of the human eye and inversion of the retinal layers: the basis for the interpretation of the retina as a phase grating optical, cellular 3D chip, J. Biol. Physics 19(1994), 243–257.

    Google Scholar 

  6. Lauinger, N.:A new interpretation of the Stiles–Crawford effects in human vision, J. Biol. Physics 19(1994), 167–188.

    Google Scholar 

  7. Lauinger, N.: The relationship between brightness, hue and saturation when the inverted human retina is interpreted as a cellular diffractive 3D chip, SPIE Proceedings, Intelligent Robots and Computer Vision 14(1995), 208–232.

    Google Scholar 

  8. Lauinger, N.: The inverted retina of the human eye: a trichromatic 4D space-time optical correlator, SPIE Proceedings, Intelligent Robots and Computer Vision 15(1996, in press).

  9. Schultze, M.: Zur Anatomie und Physiologie der Retina, Archiv für mikroskopische Anatomie 2(1866), 174–286.

    Google Scholar 

  10. Dosho, S., Ise, N., Ito, K., Iwai, S., Kitano, H., Matsuoka, H., Nakamura, H., Okumura, H., Ono, T., Sogami, I.S., Ueno, Y., Yoshida, H. and Yoshiyama, T.: Recent study of polymer latex dispersions, Langmuir 9(1993), 394–411.

    Google Scholar 

  11. Pusey, P.N. and van Megen, W., Barlett, P., Ackerson, B.J., Rarity, J.G. and Underwood, S.M.: Structure of crystals of hard colloidal spheres, Phys. Rev. Lett. 63(1989), 2753–2756.

    Google Scholar 

  12. Nagayama, K.: Two-dimensional self assembly of colloids in thin liquid films, Colloids and Surfaces A109(1996), 363–374.

    Google Scholar 

  13. Denkov, N.D., Velev, O.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H. and Nagayama, K.: Mechanism of formation of two-dimensional crystals from latex particles on substrates, Langmuir 8(1992), 3181–3190.

    Google Scholar 

  14. Lasarov, G.S., Denkov, N.D., Velev, O.D., Kralchevsky, P.A. and Nagayama, K.: Formation of two-dimensional structures from colloidal particles on flurinated oil substrate, J. Chem. Soc. Faraday Trans. 90(1994), 2077–2083.

    Google Scholar 

  15. Dimitrov, A.S. and Nagayama, K.: Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir 12(1996), 1303–1311.

    Google Scholar 

  16. Alfrey Jr., T., Bradford, E.B., Vanderhoff, J.W. and Oster, G.: Optical properties of uniform particle-size latexes, J. Opt. Soc. Am. 44(1954), 603–609.

    Google Scholar 

  17. Ghirandella, H.: Appl. Opt. 30(1991), 3492.

    Google Scholar 

  18. Hayashi, S., Kumamoto, Y., Suzuki, T. and Hirai, T.: Imaging by polystyrene latex particles, J. Colloid Interface Sci. 144(1991), 538–547.

    Google Scholar 

  19. Wei Hu, Hongqiang Li, Bingying Cheng, Junhui Yang, Zhaolin Li, Jiren Xu and Daozhong Zhang: Planar optical lattice of TiO2 particles, Optics Letters 20(1995), 964–966.

    Google Scholar 

  20. Deckmann, H.W. and Dunsmir, J.H.: Natural lithography, Appl. Phys. Lett. 41(1982), 377–379.

    Google Scholar 

  21. Goodwin, J.W., Hearn, J., Ho, C.-C. and Ottewill, R.H.: Studies on the preparation and characterisation of monodisperse polystyrene latices, Colloid Polym. Sci. 52(1974), 464–471.

    Google Scholar 

  22. Goodwin, J.W., Ottewill, R.H. and Parentich, A.: Optical examination of structured colloidal dispersions, J. Phys. Chem. 84(1980), 1580–1586.

    Google Scholar 

  23. Van Winkle, D.H. and Murray, C.A.: Layering transitions in colloidal crystals as observed by diffraction and direct-lattice imaging, Phys. Rev. A34(1986), 562–573.

    Google Scholar 

  24. Burns, M.M., Fournier, J.-M. and Golovchenko, A.: Optical matter: crystallization and binding in intense optical fields, Science 9(1990), 749–754.

    Google Scholar 

  25. Dushkin, C.D., Nagayama, K., Miwa, T. and Kralchewsky, P.A.: Coloured multilayers from transparent submicrometer spheres, Langmuir 9(1993), 3695–3701.

    Google Scholar 

  26. Born, M. and Wolf, E.: Principles of Optics, Pergamon Press, Oxford, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LAUINGER, N., PINNOW, M. & GÖRNITZ, E. Phase Grating from Ordered Polymer Lattices for Optica Image Preprocessing. Journal of Biological Physics 23, 73–88 (1997). https://doi.org/10.1023/A:1004932705351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004932705351

Navigation