Skip to main content
Log in

Deuterium, Oxygen-18, and Tritium as Tracers for Water Vapour Transport in the Lower Stratosphere and Tropopause Region

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Simultaneous measurements of the three rare isotopes Deuterium (D), Tritium (T), and Oxygen-18 (18O) in water vapour were made for the first time in the vicinity of the northern hemisphere tropopause. In contrast to expectation, high D/H and 18O/16O ratios, but relatively low T/H ratios, were found within the lowermost stratosphere. Since water vapour in the low-latitude upper troposphere shows a similar isotopic signature, we conclude that in the mid-latitudes considerable amounts of tropospheric water vapour are injected into the lowermost stratosphere, probably resulting in a hydration of the lower stratosphere. In addition, T can serve as tracer for precipitation of water containing stratospheric aerosol particles, because the T/H ratio in stratospheric water vapour is orders of magnitude higher than in the upper troposphere. Thus, even a small contribution of water of stratospheric origin should be detectable in the tropopause region. In our measurements performed in the Arctic we did not find isotopic evidence for sedimentation of PSC particles down to the tropopause. This may be caused by the low spatial and temporal coverage of our observations; however, it may also be due to the much weaker wintertime dehydration of the Arctic vortex compared to the Antarctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appenzeller, C., Holton, J.G., and Rosenlof, K.H. (1996) Scasonal variation of mass transport across the tropopause, J. Geophys. Res. 101(D10), 15071–15078

    Google Scholar 

  • Arnold, F., Schlager, H., Hoffmann, J., Metzinger, P. and Spreng, S. (1989) Evidence for stratospheric nitric acid condensation from balloon and rocket measurements in the Arctic, Nature 342, 493–497

    Google Scholar 

  • Beyer, K.D., Seago, S.W., Chang, H.Y., and Molina, M.J. (1994) Composition and freezing of aqueous H2SO4/HNO3 solutions under polar stratospheric conditions, Geophys. Res. Lett. 21, 871–874

    Google Scholar 

  • Boering, K.A., Hintsa, E.J., Wofsky, S.C., Anderson, J.G., Daube, Jr., B.C., Dessler, A.E., Loewenstein, M., McCormick, M.P., Podolske, J.R., Weinstock, E.M., and Yue, G.K. (1995) Measurements of stratospheric carbon dioxide and water vapor at northern midlatitudes: Implications for troposphere-to-stratosphere transport, Geophys. Res. Lett. 22(20), 2737–2740.

    Google Scholar 

  • Brenninkmeijer, C.A.M., Kraft, P., and Mook, W.G. (1983) Oxygen isotope fractionation between CO2 and H2O, Isot. Geosci. 1, 181–190

    Google Scholar 

  • Browell, E.V., Butler, C.F., Ismail, S., Robinette, P.A., Carter, A.F., Higdon, N.S., Toon, O.B., Schoeberl, M.R., and Tuck, A.F. (1990) Airborne lidar observations in the wintertime Arctic stratosphere: Polar Stratospheric Clonds, Geophys. Res. Lett. 17, 385–388

    Google Scholar 

  • Chen, P. (1995) Isentropic cross-tropopanse mass exchange in the extratropics, J. Geophys. Res. 100(D8), 16661–16673

    Google Scholar 

  • Ciais, P., and Jouzel, J. (1994). Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes, J. Geophys. Res. 99, 16793–16803

    Google Scholar 

  • Craig, H. (1961) Isotopic variations in the meteoric waters, Science 133, 1702–1703

    Google Scholar 

  • Danielsen, E.F. (1968) Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, J. Atmos. Sci. 25, 502–518

    Google Scholar 

  • Deshler, T., Peter, T., Müller, R., and Crutzen, P.J. (1994) The lifetime of Icewave-induced ice particles in the Arctic stratosphere: I. Balloonborne observations, Geophys. Res. Lett. 21, 1327–1330

    Google Scholar 

  • Dessler, A.E., Weinstock, E.M., Hintsa, E.J., Anderson, J.G., Webster, C.R., May, R.D., Elkins, J.W., and Dutton, G.S. (1994) An examination of the total hydrogen budget of the lower stratosphere, Geophys. Res. Lett. 21(23), 2563–2566

    Google Scholar 

  • Dessler, A.E., Weinstock, E.M., Anderson, J.G., and Chan, K.R. (1995) Mechanisms controlling water vapor in the lower stratosphere: A tale of two stratospheres, J. Geophys. Res. 100(D11), 23167–23172

    Google Scholar 

  • Drdla, K., and Turco, R.P. (1991) Denitrification through PSC formation: A 1-D model incorporating temperature oscillations, J. Atmos. Chem. 12, 319–366

    Google Scholar 

  • Ebel, A., Hass, H., Jakobs, H.J., Laube, M., Memmesheimer, M., Oberreuter, A., Geiss, H., and Kuo, Y.H. (1991) Simulation of ozone intrusion caused by a tropopause fold and cut-off-low. Atm. Environment 25, 2131–2144

    Google Scholar 

  • Ehhalt, D.H. (1971) Vertical profiles and transport of HTO in the troposphere, J. Geophys. Res. 76, 7351–7367

    Google Scholar 

  • Ehhalt, D.H. (1973) Turnover times of 137Cs and HTO in the troposphere and removal times of natural acrosol particles and water vapor, J. Geophys. Res. 78, 7076–7086

    Google Scholar 

  • Ehhalt, D.H. (1974) Vertical profiles of HTO, HDO and H2O in the troposphere, NCAR-TN.STR-100, National Center for Atmospheric Research, Boulder, Colorado

    Google Scholar 

  • Fahey, D.W., Kelly, K.K., Kawa, S.R., Tuck, A.F., Loewenstein, M., Chan, K.R., and Heidt, L.E. (1990) Observation of denitrification and dehydration in the winter polar stratospheres, Nature 344, 321–324

    Google Scholar 

  • Gedzelman, S.D., and Arnold, R. (1994) Modeling the isotopic composition of precipitation, J. Geophys. Res. 99, 10455–10471

    Google Scholar 

  • Hoerling, M.P., Schaack, T.K., and Lenzen, A.J., (1993) A global analysis of stratospheric-tropospheric exchange during northern winter, Mon. Weather. Rev. 121, 162–172

    Google Scholar 

  • Hofmann, D.J., and Oltmans, S.J. (1992) The effect of stratospheric water vapor on the heterogeneous reaction of CIONO2 and H2O for sulfuric acid acrosol, Geophys. Res. Lett. 19, 2211–2214

    Google Scholar 

  • Holdsworth, G., Fogarasi, S., and Krouse, H.R. (1991) Variation of stable isotopes of water with altitude in the Saint Elias Mountains of Canada, J. Geophys. Res. 96(D4), 7483–7494

    Google Scholar 

  • Holton, J.R., Haynes, P.H., McIntyre, M.E., Douglass, A.R., Rodd, R.B., and Pfister, L. (1995) Stratosphere-troposphere exchange, Rev. Geophys. 33(4), 403–439

    Google Scholar 

  • IAEA (1994) Environmental Isotope Data No. 10: World survey of isotope concentration in precipitation (1988–1991), International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (1995) Reference and intercomparison materials for stable isotopes of light elements, IAEA-TECDOC-825, Vienna

  • IPCC (1995) Climate Change 1994, Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios, Intergovernmental Panel on Climate, Change, Cambridge University Press

  • Jouzel, J., Pourchet, M., Lorins, C., and Merlivat, I. (1979) Artificial tritium fallont at the south pole, in IAEA-SM-232/38

  • Kaye, J.A. (1987) Mechanisms and observations for isotope fractionation of molecular species in planetary atmospheres, Rev. Geophys. 25(8), 1609–1658

    Google Scholar 

  • Kaye, J.A. (1990) Analysis of the origins and implications of the 18O content of stratospheric water vapor, J. Atmos. Chem. 10, 39–57

    Google Scholar 

  • Lal, D., and Peters, B. (1967) Cosmic ray produced radioactivity on the earth, in Handbuch der Physik 40/2, Rosmische Strahlung, Springer

  • Majoube, M. (1971) Fractionnement en oxygéne 18 et en deutérium entre l'ean et sa vapeur, J. Chim. Phys. 10, 1423–1436

    Google Scholar 

  • Mason, A.S., and Östlund, H.G. (1976) Atmospheric HT and HTO, 3. Vertical transport of water in the stratosphere, J. Geophys. Res. 81, 5349–5352

    Google Scholar 

  • Mason, A.S., and Öslund, H.G. (1979) Atmospheric HT and HTO. 5. Distribution and large-scale circulation, in IAEA-SM-232/62

  • Merlivat, L., and Nief, G. (1967) Isotopic fractionation of the solid-vapor and liquid-vapor changes of state of water at temperatures below 0°C, Tellus 19, 122–127

    Google Scholar 

  • Moortgat, G.K., Barres, A.J., LeBras, G., and Sodeau, J.R. (1994) (editors), Low-temperature chemistry of the atmosphere, NATO ASI Series, Springer-Verlag

  • Mote, P.W. (1995) Reconsideration of the cause of dry air in the southern middle latitude stratosphere, Geophys. Res. Lett. 22(15), 2025–2028

    Google Scholar 

  • Mote, P.W., Rosenlof, K.H., McInytre, M.E., Catt, E.B., Gille, J.C., Hotton, J.R., Kinnersley, J.S., Pumphrey, H.C., Rusell III, J.M., and Waters, J.W. (1996) An atmospheric tape recorder: the imprint of tropical tropopause temperatures on stratospheric water vapour, J. Geophys. Res. 101(D2), 3989–4006

    Google Scholar 

  • Okai, T., and Takashima, Y. (1991) Tritium concentration in atmospheric water vapor, hydrogen and hydrocarbons in Fukuoka, Appl. Radiat. Isot. 42, 389–393

    Google Scholar 

  • Oltmans, S.J. (1993) Climatology of Arctic and Antarctic tropospheric ozone, in NATO ASI Series 17, Springer 25–40

  • Oltmans, S.J., and Hofmann, D.J. (1995) Increase in lower-stratospheric water vapour at a mid-latitude Northern Hemisphere site from 1981 to 1994, Nature 374, 146–149

    Google Scholar 

  • Ovatlez, J., and Ovarlez, H. (1994) Stratospherie water vapor content during EASOE, Geophys. Res. Lett. 21, 1235–1238

    Google Scholar 

  • Pawson, S., Naujokat, B., and Labitzke, K. (1995) On the polar stratospheric cloud formation potential of the northern stratosphere, J. Geophys. Res. 100(D11), 23215–23225

    Google Scholar 

  • Petzold, K., Nanjokat, B., and Neugebohren, K. (1994) Correlation between stratospheric temperature, total ozone, and tropospheric weather systems, Geophys. Res. Lett. 21, 1203–1206

    Google Scholar 

  • Podolske, J.R., Loewenstein, M., Weaver, A., Strahan, S.E., and Chan, K.R. (1993) Northern hemispheric nitrous oxide morphology during the 1989 AASE and the 1991–1992 AASE II campaigns, Geophys. Res. Lett. 20, 2535–2538

    Google Scholar 

  • Pollock, W., Heidt, L.E., Lueb, R.A., and Ehhalt, D.H. (1980) Measurement of stratospheric water vapor by cryogenic collection, J. Geophys. Res. 85, 5555–5568

    Google Scholar 

  • Raimer, E. (1995) Personal communications, FU Berlin

  • Reiter, E.R., Glasser, M.E., and Mablmann, J.D. (1969) The role of the tropopause in stratospheric-tropospheric exchange of air, Pure Appl. Geophys. 75, 185–218

    Google Scholar 

  • Rinsland C.P., Goldman, A., Malathy Devi, V., Fridovich, B., Snyder, D.G.S., Jones, G.D., Murcray, F.J., Murcray, D.G., Smith, M.A.H., Scals, Jr., R.K., Coffey, M.T., and Mankin, W.G. (1984) Simultaneous stratospheric measurements of H2O, HDO, CH4 from balloon-borne and aircraft infrared solar absorption spectra and tunable diode laser spectroscopy of HDO, J. Geophys. Res. 89, 7259–7266

    Google Scholar 

  • Rinsland, C.P., M.R., Gunson, M.R., Foster, J.C., Toth, R.A., Farmer, C.B., and Zandor, R. (1991) Stratospheric profiles of heavy water vapor isotopes and CH3D from analysis of the ATMOS Spacelab 3 infrared solar spectra, J. Geophys. Res. 96, 1057–1068

    Google Scholar 

  • Rozanski, K., and Sonntag, C. (1982) Vertical distribution of deuterium in the atmospheric water vapor, Tellus 34, 135–141

    Google Scholar 

  • Rozanski, K., Gonfiantini, R., and Araguas-Araguas, L. (1991) Tritium in the global atmosphere: Distribution patterns and recent trends, J. Phys. G: Nacl Part. Phys. 17, 5523–5536

    Google Scholar 

  • Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R. (1993) Isotopic patterns in modern global precipitation, Climate Change in continental isotopic records, Geophys. Monograph 78, 1–36

    Google Scholar 

  • Schäfer, H.J., Scheuch, P., Langer, M., Fricke, K.H., Zahn, U.v., and Knudsen, B.M. (1994) Lidar observations of polar stratospheric clouds at Andoya, Norway, in January 1992, Geophys. Res. Lett. 21, 1307–1310

    Google Scholar 

  • Schwerdtfeger, W. (1984) Weather and climate of the Antarctic, Elsevier, New York

    Google Scholar 

  • Tabazadeh, A., Toon, O.B., and Hamill, P. (1995) Freezing behavior of stratospheric sulfate aerosols inferred from trjectory studies, Geophys. Res. Lett. 22(13), 1725–1728

    Google Scholar 

  • Taylor, C.B. (1968) A comparison of tritium and strontium-90 fallont in the southern hemisphere, Tellus 20, 559–576

    Google Scholar 

  • Taylor, C.B. (1972) The vertical variation of variations of isotopic concentrations of tropospheric water vapour over continental Europe, and their relationship to tropospheric structure, Report INS-R-107, Department of Scientific and Industrial Research, Institute of Nuclear Sciences, Lower Hutt, New Zealand

    Google Scholar 

  • Taylor, C.B. (1984) Vertical distribution of deuterium in atmospheric water vapour: problems in application to assess atmospheric condensation models, Tellus 30B, 67–72

    Google Scholar 

  • Tuck, A.F., Russell III, J.M., and Harries, J.F. (1993) Stratospheric dryness: antiphased desiccation over micronesia and antartica, Geophys. Res. Lett. 20, 1227–1230

    Google Scholar 

  • Tuck, A.F., Fahey, D.W., Loewenstein, M., Podolske, J.R., Kelly, K.K., Hoyde, S.J., Murphy, D.M., and Elkins, J.W. (1994) Spread of denitrification from 1987 Antarctic and 1988–1989 Arctic stratospheric vortices, J. Geophys. Res. 99, 20573–20583

    Google Scholar 

  • Uchrin, G., Ormai, P., and Hertelendi, E. (1989) Local and global impact of tritium and Carbon-14 released from Paks Nuclear Power Plant, Int. Symposium, Dnbrovnik, October

    Google Scholar 

  • Vömel, H., Oltmans, S.J., Hofmann, D.J., Deshler, T., and Rosen, J.M. (1995a) The evolution of the dehydration in the Antarctic stratospheric vortex, J. Geophys. Res. 100(D7), 13919–13926

    Google Scholar 

  • Vömei, H., Oltmans, S.J., Kley, D., and Crutzen, P.J. (1995b) New evidence for stratos-pheric dehydration mechanism in the equatorial Pacific, Geophys. Res. Lett. 22(23), 3235–3238

    Google Scholar 

  • Wagenbach, D. (1995) Coastal Antarctica: Atmospheric chemical composition and atmospheric transport, NATO ARW Workshop: Process of chemical exchange between the atmosphere and polar snow, Italy 1995, eds.: E. Wolff and R. Bates, Springer

  • Weiss, W., and Roether, W. (1980) The rates of tritium input to the world oceans, Earth Planet. Sci. Lett. 49, 435–446

    Google Scholar 

  • White, W.B., and Peterson, R.G. (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature and sca-ice extent, Nature 380, 609–702

    Google Scholar 

  • Zahn, A., Barth, V., Neubert, R., Levin, I., and Platt, U. (1997a) Distributions of atmospheric trace species near the northern hemisphere tropopause, Part II: The isotopic composition of carbon dioxide (13CO2, 13CO2, C18O16O), in preparation, to J. Geophys. Res.

  • Zahn, A., Pfeilsticker, K., and Platt, U. (1997b) A novel technique for determining potential vorticity at high resolution, in preparation, to J. Atmos. Sci.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahn, A., Barth, V., Pfeilsticker, K. et al. Deuterium, Oxygen-18, and Tritium as Tracers for Water Vapour Transport in the Lower Stratosphere and Tropopause Region. Journal of Atmospheric Chemistry 30, 25–47 (1998). https://doi.org/10.1023/A:1005896532640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005896532640

Navigation