Skip to main content
Log in

Modeling of iron adsorption on HTTA-loaded polyurethane foam using Freundlich, Langmuir and D-R isotherm expressions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The sorption of Fe(III) at low pH range from 1 to 4.5 on open cell polyether type HTTA-loaded polyurethane foam has been carried out using batch technique. The optimum shaking time for 2.5· 10−4M solution of Fe(III) was found to be 30 minutes. The concept of macropore and micropore nature of polyurethane foam sorbent offers unique advantages of adsorption. Freundlich and Langmuir adsorption isotherms are followed at low concentration range from 1·10−4 to 3·10−4M solution of Fe(III). The Freundlich constant (1/n=0.46±0.013 andK=9.16±1.39 mg·g−1) and Langmuir isotherm constants(M=21.78 mg·g−1 andb=88.41±9.731·g−1) were established. The sorption mean free energyE=12.22±0.09 kJ·mol−1 and loading capacityC m =145.21±6.1 mg·g−1 were evaluated using Dubinin-Radushkevich isotherm, which suggested that the adsorption mechanism was chemisorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. MOODY, J. D. R. THOMAS, Chromatographic Separation and Extraction with Foamed Plastic and Rubber, Marcel Dekker, New York, 1982.

    Google Scholar 

  2. T. BRAUN, J. D. NAVRATIL, A. B. FARAG, Polyurethane Foam Sorbents in Separation Science, CRC Press, Boca Raton, 1985.

    Google Scholar 

  3. S. PALÁGYI, T. BRAUN, Preconcentration Techniques for Trace Elements, Z. B. ALFASSI and C. M. WAI (Eds), CRC Press, Boca Raton, 1992, p. 263.

    Google Scholar 

  4. M. HALMANN, D. W. LEE, Anal. Chim. Acta, 113 (1980) 383.

    Google Scholar 

  5. T. BRAUN, A. B. FARAG, M. P. MALONEY, Anal. Chim. Acta, 93 (1977) 191.

    Google Scholar 

  6. T. BRAUN, M. N. ABBAS, Anal. Chim. Acta, 119 (1980) 113.

    Google Scholar 

  7. T. BRAUN, A. B. FARAG, Anal. Chim. Acta, 76 (1975) 107.

    Google Scholar 

  8. K. SRIKAMESWARAN, H. D. GESSER, J. Environ. Sci. Health, A13 (1978) 415.

    Google Scholar 

  9. W. J. WEBER, S. LIANG, Environ. Progress, 2 (1980) 167.

    Google Scholar 

  10. R. DESAI, M. HUSSAIN, D. M. RUTHVEN, Can. J. Chem. Eng., 70 (1992) 699.

    Google Scholar 

  11. D. M. RUTHVEN, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York, 1984.

    Google Scholar 

  12. S. D. FAUST, O. ALY, Adsorption Processes of Water Treatment, Butterworths, Boston, 1986. p. 115.

    Google Scholar 

  13. W. J. WEBER, Jr., Adsorption Technology for Chemical Industries Vol. 19, F. L. SLEJKO (Ed.), Marcel Dekker Inc., New York, 1985, p. 16.

    Google Scholar 

  14. M. S. EL-SHAHAWI, A. B. FARAG, M. R. MOSTAFA, Sep. Sci. Technol., 29 (1994) 289.

    Google Scholar 

  15. T. C. HUANG, D. H. CHEN, M. C. SHIEH, C. T. HUANG, Sep. Sci. Technol., 27 (1992) 1619.

    Google Scholar 

  16. M. S. EL-SHAHAWI, Talanta, 41 (1994) 1481.

    Google Scholar 

  17. H. D. GESSER, B. M. GUPTA, J. Radioanal. Nucl. Chem., 132 (1989) 37.

    Google Scholar 

  18. T. BRAUN, A. B. FARAG, Anal. Chim. Acta, 153 (1983) 319.

    Google Scholar 

  19. H. D. GESSER, G. A. HORSFALL, J. Chem. Phys., 74 (1977) 1072.

    Google Scholar 

  20. J. J. DREN, K. M. GOUGH, H. D. GESSER, Can. J. Chem., 57 (1979) 2032.

    Google Scholar 

  21. M. DRTIL, J. TÖLGYESSY, T. BRAUN, Fresen. J. Anal. Chem., 338 (1990) 50.

    Google Scholar 

  22. S. V. BELTYUKOVA, N. A. NAZARENKO, S. V. TSYGANKOVA, Analyst, 120 (1995) 1693.

    Google Scholar 

  23. M. M. SAEED, A. RUSHEED, N. AHMED, J. TÖLGYESSY, Sep. Sci. Technol., 29 (1994) 2143.

    Google Scholar 

  24. H. FREUNDLICH, Colloid and Capillary Chemistry, Methuen, London, 1926.

    Google Scholar 

  25. I. LANGMUIR, J. Am. Chem. Soc., 40 (1918) 136.

    Google Scholar 

  26. M. POLANYI, Trans. Faraday Soc., 28 (1932) 316.

    Google Scholar 

  27. M. M. DUBININ, L. V. RADUSHKEVICH, Proc. Acad. Sci., USSR, Phys. Chem. Sect., 55 (1947) 331.

    Google Scholar 

  28. J. P. HOBSON, J. Phys. Chem., 73 (1969) 2729.

    Google Scholar 

  29. Z. SOKOLOWSKA, J. SZCZYPA, Geoderma, 24 (1980) 349.

    Google Scholar 

  30. S. AKSOYOGLU, J. Radioanal. Nucl. Chem., 134 (1989) 393.

    Google Scholar 

  31. W. RIEMAN, H. WALTON, Ion-Exchange in Analytical Chemistry, International Series of Monographs in Analytical Chemistry, Vol. 38, Pergamon Press, Oxford, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed, M.M., Rusheed, A. & Ahmed, N. Modeling of iron adsorption on HTTA-loaded polyurethane foam using Freundlich, Langmuir and D-R isotherm expressions. Journal of Radioanalytical and Nuclear Chemistry, Articles 211, 283–292 (1996). https://doi.org/10.1007/BF02039698

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02039698

Keywords

Navigation