Skip to main content
Log in

Studies on the Non-Isothermal Decomposition of H3PMo12O40·xH2O and H4PVMo11O40·yH2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper reports a comparative study of the non-isothermal decompositions of the heteropolyacids HPM and HPVM, with structures consisting of Keggin units (KUs). Non-isothermal analysis at low heating rates demonstrated the existence of 4 crystal hydrate species, depending on the temperature. The stability domains of the anhydrous forms of HPM and HPVM were found to be 150–380°C, respectively. Processing of the TG curves obtained at different heating rates by the Ozawa method revealed that the decomposition of anhydrous HPM takes place according to a unitary mechanism, whilst for anhydrous HPVM two mechanisms are observed. Thus, the first part of the constitution water is lost simultaneously with the departure of vanadium from the KU as VO2+, while the second part is lost at higher temperatures as in the case HPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. B. Black, N. J. Clayden, P. L. Gai, J. D. Scott, E. M. Serwieka and J. R. Goodenough. J. Catal., 106 (1987) 1.

    Article  CAS  Google Scholar 

  2. G. B. McGarvey and J. B. Moffat, Catal. Lett., 16 (1992) 173.

    Article  CAS  Google Scholar 

  3. L. C. Josefowicz, H. G. Karge, E. Vasilyeva and J. B. Moffat, Micr. Mat., 1 (1993) 313.

    Article  Google Scholar 

  4. G. B. McGarvey, N. J. Taylor and J. B. Moffat, J. Mol. Catal., 80 (1993) 59.

    Article  CAS  Google Scholar 

  5. C. Rocchiccioli-Deltcheff and M. Fournier, J. Chem. Soc. Faraday Trans., 87 (1991) 3913.

    Article  CAS  Google Scholar 

  6. B. Taouk, D. Ghoussoub, A. Bernnani, E. Crusson, M. Rigole, A. Aboukais, R. Decressain, M. Fournier and M. Guelton, J. Chim. Phys., 89 (1992) 435.

    CAS  Google Scholar 

  7. C. Marchal, A. Davidson, R. Thouvenot and G. Herve, J. Chem. Soc. Faraday Trans., 89 (1993) 3301.

    Article  CAS  Google Scholar 

  8. E. Cadot, C. Marshal, M. Fournier, A. Teze and G. Herve, in Polyoxometalates, M. T. Pope and A. Muller (eds), Kluwer Dordrecht, 1994, p. 315.

  9. B. Herzog, W. Bensch, Th. Ilkenhans and R. Schlogl, Catal. Lett., 20 (1993) 203.

    Article  CAS  Google Scholar 

  10. K. Bruckman, M. Che, J. Haber and J. M. Tatibouet, Catal. Lett., 25 (1994) 225.

    Article  CAS  Google Scholar 

  11. G. A. Tsigdinos and C. J. Hallada, Inorg. Chem., 7 (1968) 437.

    Article  CAS  Google Scholar 

  12. H. d'Amour and R. Allmann, Z. Kristallogr., 143 (1976) 1.

    Google Scholar 

  13. V. A. Sergienko, M. A. Porai-Koshits and E. N. Yurchenko, J. Struct. Chem., 21 (1980) 87.

    Article  Google Scholar 

  14. H. T. Evans and M. T. Pope, Inorg. Chem., 23 (1984) 501.

    Article  CAS  Google Scholar 

  15. J. E. Keggin, Nature (London), 131 (1933) 908; Proc. R. Soc. London Ser. A 144 (1934) 75.

    CAS  Google Scholar 

  16. G. M. Brown, M. R. Noc-Spirlet, W. R. Busing and H. A. Levy, Acta Cryst. Sect. B 33 (1977) 1038.

    Article  Google Scholar 

  17. C. Popescu, E. Segal and C. Oprea, J. Thermal Anal., 38 (1992) 929.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasca, V., Ştefãnescu, M. & Popa, A. Studies on the Non-Isothermal Decomposition of H3PMo12O40·xH2O and H4PVMo11O40·yH2O. Journal of Thermal Analysis and Calorimetry 56, 569–578 (1999). https://doi.org/10.1023/A:1010113013352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010113013352

Navigation