Skip to main content
Log in

New Microthermogravimetric Apparatus. Kinetics of metal sulphidation and transport properties of transition metal sulphides

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel microthermogravimetric apparatus to study the kinetics of metal sulphur reactions and transport properties of transition metal sulphides has been described. The main feature of this arrangement includes the application of the carrier gas for sulphur vapour transportation and the protection of the balance chamber from sulphur attack. As a consequence, the helix balance could have been replaced by an automatic electronic microbalance and the accuracy of the mass change measurements increased more than two orders of magnitude, up to 10–7 g. The application of two liquid sulphur reservoirs created very stable, strictly defined reaction conditions, and enabled to make rapid changes of sulphur partial pressure in the reaction chamber. It has been demonstrated that all these innovations make it possible to study not only the kinetics of very slow sulphidation processes but also to determine deviations from stoichiometry and defect mobility in transition metal sulphides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Meadowcroft and H. J. Manning, Corrosion Resistant Materials for Coal Gasification Systems, Applied Science, London 1993.

    Google Scholar 

  2. P. Kofstad, High-temperature Corrosion, Elsevier, Amsterdam 1988, p. 425.

    Google Scholar 

  3. S. Mrowec, Oxid. Met., 44 (1995) 177.

    Article  CAS  Google Scholar 

  4. S. Mrowec and K. Przybylski, High Temp. Mater. Processes, 6 (1984) 1.

    CAS  Google Scholar 

  5. S. Mrowec and J. Janowski, Similarities and Differences in defect dependent properties of Transition Metal Sulphides and Oxides, in: Selected Topics in High-Temperature Chemistry, Ed. by O. Johannesen and A. G. Andersen, Elsevier, Amsterdam 1989, p. 55.

    Google Scholar 

  6. S. Mrowec, Defects and Diffusion in Solids, Elsevier, Amsterdam 1980, p. 174.

    Google Scholar 

  7. S. Mrowec and T. Werber, Gas Corrosion of Metals, National Bureau of Standards and National Science Foundation, Washington, D. C. 1978, p. 444.

    Google Scholar 

  8. S. Mrowec and T. Werber, Modern Scaling Resistant Materials, National Bureau of Standards and National Science Foundation, Washington D. C. 1982, p. 195.

    Google Scholar 

  9. M. Danielewski, S. Mrowec and A. Wojtowicz, Oxid. Met., 35 (1991) 223.

    Article  CAS  Google Scholar 

  10. O. Neeunhoffer and K. Hauffe, Z. anorg. allg. Chem., 262 (1950) 300.

    Google Scholar 

  11. K. Hauffe and A. Rahmel, Z. physik. Chem., 199 (1952) 152.

    CAS  Google Scholar 

  12. P. Geld and A. Krasowskaya, J. Phys. Chem., 34 (1962) 1721.

    Google Scholar 

  13. B. Lichter and C. Wagner, J.Electrochem. Soc., 807 (1960) 168.

    Google Scholar 

  14. L. Czerski, S. Mrowec and T. Werber, J. Electrochem. Soc., 109 (1962) 273.

    CAS  Google Scholar 

  15. S. Mrowec, A. Stoklosa and M. Danielewski, Oxid. Met., 11 (1977) 355.

    Article  CAS  Google Scholar 

  16. M. Danielewski and S. Mrowec, J. Thermal Anal., 29 (1984) 1025.

    Article  CAS  Google Scholar 

  17. B. S. Lee and R. A. Rapp, J. Electrochem. Soc., 131 (1984) 2988.

    Google Scholar 

  18. M. F. Chen and D. L. Douglass, Oxid. Met., 32 (1989) 185.

    Article  CAS  Google Scholar 

  19. R. Rusiecki, A. Wojtowicz, S. Mrowec and K. Przybylski, Solid State Ionics, 21 (1986) 273.

    Article  CAS  Google Scholar 

  20. Z. Zurek, J. Thermal Anal., 39 (1993) 15.

    Article  CAS  Google Scholar 

  21. W. Znamirowski, F. Gesmundo, S. Mrowec, M. Danielewski, K. Godlewski and F. Viani, Oxid. Met., 35 (1991) 175.

    Article  CAS  Google Scholar 

  22. G. Simkovich, Werkstoffe und Korrosion, 21 (1970) 973.

    Article  CAS  Google Scholar 

  23. T. Norby, Hydrogen Defects in Inorganic Solids, in: Selected Topics in High-Temperature Chemistry, Ed. by O. Johannesen and A. G. Andersen, Elsevier, Amsterdam 1989, p. 101.

    Google Scholar 

  24. T. Norby and P. Kofstad, J. Amer. Ceram. Soc., 67 (1984) 786.

    CAS  Google Scholar 

  25. M. Wakihara, T. Uhida and M. Taniguchi, Mater. Res. Bull., 11 (1976) 973.

    Article  CAS  Google Scholar 

  26. F. A. Elrefaie and W. W. Smeltzer, Oxid. Met., 16 (1981) 267.

    Article  CAS  Google Scholar 

  27. J. Larpin and M. Perez, Oxid. Met., 21 (1984) 279.

    Google Scholar 

  28. M. Danielewski, Oxid. Met., 25 (1986) 51.

    Article  CAS  Google Scholar 

  29. S. Mrowec and K. Przybylski, Oxid. Met., 23 (1985) 107.

    Article  CAS  Google Scholar 

  30. M. Danielewski and S. Mrowec, Solid State Ionics, 17 (1985) 29.

    Article  CAS  Google Scholar 

  31. H. Rau, J. Phys. Chem. Solids, 39 (1978) 3339.

    Google Scholar 

  32. S. Mrowec, M. Danielewski and H. J. Grabke, J. Mater. Sci., 25 (1990) 837.

    Article  Google Scholar 

  33. P. Papaiacovou, K. Hennesen and H. J. Grabke, Solid State Communications, 73 (1990) 105.

    Article  CAS  Google Scholar 

  34. J. Gilewicz-Wolter, M. Danielewski and S. Mrowec, Physical Rev. B, 56 (1997) 8695.

    Article  CAS  Google Scholar 

  35. S. Mrowec, M. Danielewski and J. Gilewicz-Wolter, Solid State Ionics, 117 (1999) 65.

    Article  CAS  Google Scholar 

  36. H. Le Brusq and J. P. Delmaire, Rev. Int. Hautes Temp. Refact., 11 (1974) 193.

    CAS  Google Scholar 

  37. J. Rasneur and D. Carton, C. R. Acad. Sci. Paris, Ser. II, 290 (1980) 405.

    CAS  Google Scholar 

  38. M. Danielewski and S. Mrowec, Solid State Ionics, 17 (1985) 319.

    Article  CAS  Google Scholar 

  39. P. Kofstad, Non-stoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Wiley, New York 1972.

    Google Scholar 

  40. S. Mrowec, An Introduction to the Theory of Metal Oxidation, National Bureau of Standards and National Science Foundation, Washington D. C. 1982, p. 172.

    Google Scholar 

  41. S. Mrowec, Reactivity of Solids, 5 (1988) 241.

    Article  Google Scholar 

  42. S. Mrowec and K. Hashimoto, J. Mater. Sci., 30 (1995) 4801.

    Article  CAS  Google Scholar 

  43. J. B. Wagner, in: Mass Transport in Oxides, NBS Special Publ., 269 (1969) 65.

    Google Scholar 

  44. P. E. Child, L. W. Laub and J. B. Wagner, Proc. Brit. Ceram. Soc., Mass Transport in Non-Metallic Solids, 19 (1971) 29.

    Google Scholar 

  45. P. E. Child and J. B. Wagner, Heterogeneous Kinetics at Elevated Temperatures, Plenum Press, New York 1970, p. 269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzesik, Z., Mrowec, S., Walec, T. et al. New Microthermogravimetric Apparatus. Kinetics of metal sulphidation and transport properties of transition metal sulphides. Journal of Thermal Analysis and Calorimetry 59, 985–997 (2000). https://doi.org/10.1023/A:1010199030780

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010199030780

Navigation