Skip to main content
Log in

Functional implications of the unusual amino acid sequence of the regulatory light chain ofAcanthamoeba castellanii myosin-II

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

We have determined by protein chemistry methods the amino acid sequence of light chain 2 fromAcanthamoeba castellanii myosin-II (ALC2). This is the first reported sequence for any protozoan myosin light chain. ALC2 consists of 154 amino acid residues, including a single residue of His and two residues each of Pro and Tyr, and lacks Cys and Trp. The N-terminus is blocked, and if an N-terminal acetyl group is assumed, ALC2 has a calculated molecular weight of 17657. ALC2 is an acidic protein, with a calculated net charge of — 7 at pH 7. The sequence of ALC2 is most similar to those of the calmodulins (identity approximately 35%, followed by myosin regulatory light chains. ALC2 appears to lack the potential N-terminal phosphorylation site and single Ca2+-binding site in region I which are characteristic of most myosin regulatory light chains. Instead, ALC2, unlike any other myosin light chain characterized to date, may have a functional Ca2+-binding site only in region II, suggesting a novel role of ALC2 in the Ca2+ regulation of the activity ofAcanthamoeba myosin-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba, M. L., Goodman, M., Berger-Cohn, J., Demaille, J. G. &Matsuda, G. (1984) The early adaptive evolution of calmodulin.Molec. Biol. Evol. 1, 442–55.

    PubMed  Google Scholar 

  • Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, G. E., Means, A. R. &Cook, W. J. (1985) Three-dimensional structure of calmodulin.Nature 315, 37–40.

    PubMed  Google Scholar 

  • Babu, Y. S., Bugg, C. E. &Cook, W. J. (1988) Structure of calmodulin refined at 2.2 Å resolution.J. Mol. Biol. 204, 191–204.

    PubMed  Google Scholar 

  • Chisolm, R. L., Rushforth, A. M., Pollenz, R. S., Kuczmarski, E. R. &Tafuri, S. R. (1988)Dictiostelium discoideum myosin: isolation and characterization of cDNAs encoding the essential light chain.Mol. Cell. Biol. 8, 794–801.

    PubMed  Google Scholar 

  • Collins, J. H. (1974) Homology of myosin light chains, troponin C and parvalbumins deduced from comparison of their amino acid sequences.Biochem. Biophys. Res. Commun. 58, 301–8.

    PubMed  Google Scholar 

  • Collins, J. H. (1976) Structure and evolution of troponin C and related proteins.Soc. Exp. Biol. Symp. 30, 303–34.

    Google Scholar 

  • Collins, J. H. (1991) Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons.J. Muscle Res. Cell Motil. 12, 3–25.

    PubMed  Google Scholar 

  • Collins, J. H. &Korn, E. D. (1980) Actin activation of Ca2+- sensitive Mg2+-ATPase activity ofAcanthamoeba myosin II is enhanced by dephosphorylation of its heavy chains.J. Biol. Chem. 255, 8011–14.

    PubMed  Google Scholar 

  • Collins, J. H. &Korn, E. D. (1981) Purification and characterization of actin-activateable, Ca-sensitive myosin-II fromAcanthamoeba.J. Biol. Chem. 256, 2586–95.

    PubMed  Google Scholar 

  • Collins, J. K., Potter, J. D., Horn, M. J., Wilshire, G. &Jackman, N. (1973) The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle.FEBS Lett. 36, 268–72.

    PubMed  Google Scholar 

  • Collins, J. H., Jakes, R., Kendrick-Jones, J., Leszyk, J., Barouch, W., Theibert, J. L., Spiegel, J. &Szent-Gyorgyi, A. G. (1986) Amino acid sequence of myosin essential light chain from the scallopAquipecten irradians.Biochemistry 25, 7651–6.

    PubMed  Google Scholar 

  • Coté, G. P., Collins, J. H., &Korn, E. D. (1981) Identification of three phosphorylation sites on each heavy chain ofAcanthamoeba myosin II.J. Biol. Chem. 256, 12811–16.

    PubMed  Google Scholar 

  • Goodwin, E. B., Szent-Gyorgyi, A. G., &Leinwand, L. (1987) Cloning and characterization of the scallop essential and regulatory myosin light chain cDNAs.J. Biol. Chem. 262, 11052–6.

    PubMed  Google Scholar 

  • Griffith, L. M., Downs, S. M. &Spudich, J. A. (1987) Myosin light chain kinase and myosin light chain phosphatase fromDictyostelium:effects of reversible phosphorylation on myosin structure and function.J. Cell Biol. 104, 1309–23.

    PubMed  Google Scholar 

  • Hammer, J. A. III, Bowers, B., Paterson, B. M. &Korn, E. D. (1987) Complete nucleotide sequence and deduced polypeptide sequence of a non-muscle myosin heavy chain gene fromAcanthamoeba: evidence of a hinge in the rodlike tail.J. Cell Biol. 105, 913–25.

    PubMed  Google Scholar 

  • Heinrickson, R. L. &Meredith, S. C. (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate.Anal. Biochem. 136, 65–74.

    PubMed  Google Scholar 

  • Herzberg, O. &James, M. N. G. (1985) Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution.Nature 313, 653–9.

    PubMed  Google Scholar 

  • Herzberg, O. &James, M. N. G. (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution.J. Mol. Biol. 203, 761–79.

    PubMed  Google Scholar 

  • Kendrick-Jones, J., Lehman, W. &Szent-Gyorgyi, A. G. (1970) Regulation in molluscan muscles.J. Molec. Biol. 54, 313–26.

    PubMed  Google Scholar 

  • Klee, C. B. (1977) Conformational transition accompanying the binding of Ca2+ to the protein activator of 3′, 5′-cyclic adenosine monophosphate phosphodiesterase.Biochemistry 16, 1017–24.

    PubMed  Google Scholar 

  • Kobayashi, T., Takagi, T., Konishi, K., Hamada, Y., Kawaguchi, M. &Kohama, K. (1988) Amino acid sequence of the calcium-binding light chain of myosin from the lower eukaryotePhysarum polycephalum.J. Biol. Chem. 263, 305–13.

    PubMed  Google Scholar 

  • Kohama, K. (1989) Ca-binding light chain of Ca-inhibitory myosin fromPhysarum polycephalum. InCalcium Signal and Cell Response (edited byYagi, K. &Miyazaki, T.) pp. 95–105 Tokyo:Japan Scientific Society Press, and Berlin:Springer.

    Google Scholar 

  • Korn E. D. &Hammer, J. A. III (1988) Myosins of non-muscle cells.Ann. Rev. Biophys. Biophys. Chem. 17, 23–45.

    Google Scholar 

  • Korn, E. D., Atkinson, M. A. L., Brzeska, H., Hammer, J. A. III, Jung, G. &Lynch, T. J. (1988) Structure-function studies onAcanthamoeba myosins IA, IB and II.J. Cell. Biochem. 36, 37–50.

    PubMed  Google Scholar 

  • Kwon, H., Goodwin, E. B., Nyitray, L., Berliner, E., O'Neall-Hennessey, E., Melandri, F. D. &Szent-Gyorgyi, A. G. (1990) Isolation of the regulatory domain of scallop myosin: role of the essential light chain in calcium binding.Proc. Natl Acad. Sci. (USA) 87, 4771–5.

    Google Scholar 

  • Leavis, P. C. &Gergely, J. (1984) Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction.CRC Crit. Rev. Biochem. 16, 235–305.

    PubMed  Google Scholar 

  • Malencik, D. A. &Anderson, S. R. (1988) Peptide cross-linking to calmodulin: attachment of [Tyr8] substance P.Biochemistry 27, 1941–9.

    PubMed  Google Scholar 

  • Marshak, D. R., Clarke, M., Roberts, D. M. &Watterson, D. M. (1984) Structural and functional properties of calmodulin from the eukaryotic microorganismDictyostelium discoideum.Biochemistry 23, 2891–9.

    PubMed  Google Scholar 

  • Maruta, H. &Korn, E. D. (1977)Acanthamoeba myosin II.J. Biol. Chem. 252, 6501–9.

    PubMed  Google Scholar 

  • Satyshur, K. A., Rao, S. T., Pyzalska, D., Drendel., W., Greaser, M. &Sundaralingam, M. (1988) Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution.J. Biol. Chem. 263, 1628–47.

    PubMed  Google Scholar 

  • Sinard, J. H. &Pollard, T. D. (1989) The effect of heavy chain phosphorylation and solution conditions on the assembly ofAcanthamoeba myosin-II.J. Cell Biol. 109, 1529–35.

    PubMed  Google Scholar 

  • Sundaralingam, M., Bergstrom, R., Strasburg, G., Rao, S. T., Roychowdhury, P., Greaser, M. &Wang, B. C. (1985) Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution.Science 227, 945–8.

    PubMed  Google Scholar 

  • Tafuri, S. R., Rushforth, A. M., Kuczmarski, E. R. &Chisolm, R. L. (1989)Dictiostelium discoideum myosin: isolation and characterization of cDNAs encoding the regulatory light chain.Mol. Cell. Biol. 9, 3073–80.

    PubMed  Google Scholar 

  • Warrick, H. M., Delozanne, A., Leinwand, L. A. &Spudich, J. A. (1986) Conserved protein domains in a myosin heavy chain gene fromDictyostelium discoideum.Proc. Natl Acad. Sci. (USA) 83, 9433–7.

    Google Scholar 

  • Zot, A. S. &Potter, J. D. (1987) Structural aspects of troponintropomyosin regulation of skeletal muscle contraction.Ann. Rev. Biophys. Biophys. Chem. 16, 535–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Zot, H.G., Pollard, T.D. et al. Functional implications of the unusual amino acid sequence of the regulatory light chain ofAcanthamoeba castellanii myosin-II. J Muscle Res Cell Motil 12, 553–559 (1991). https://doi.org/10.1007/BF01738443

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738443

Keywords

Navigation