Skip to main content
Log in

Optimum DNA relaxation reaction conditions for calf thymus DNA-Topoisomerase I are determined by specific enzyme features

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Reactivity and chemical properties of calf thymus Topoisomerase I have been investigated with respect to enzyme ability to relax supercoiled DNA. The relaxation rate has been analyzed at optimum and relatively high salt concentration. Catalysis is processive at optimum salt concentration and distributive at a higher one; camptothecin decreases the initial rate of reaction in both salt conditions, but more so at the higher one. We conclude that:

  1. 1.

    calf thymus Topoisomerase I requires, for its maximum reactivity, specific and characteristic reaction conditions;

  2. 2.

    salt concentration affects DNA processing, indeed influencing the initial rate of DNA relaxation and directly reflecting the salt-dependence for the enzyme-duplex DNA binding;

  3. 3.

    Topoisomerase I, from various sources, maybe individually responds to alteration of assay parameters such as pH, Mg++ and NaCl concentrations, indicating that individual criteria could be responsible for the catalytic activity optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CPT:

camptothecin

DTT:

dithiothreitol

PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium docecyl sulfate

Topo I:

Topoisomerase I

References

  1. WangJC (1985) Annu. Rev. Biochem. 54: 665–697

    Google Scholar 

  2. GargLC, DiAngeloS & JacobST (1987) Proc. Natl. Acad. Sci. U.S.A. 84: 3185–3188

    Google Scholar 

  3. ZhangH, WangJC & LiuLF (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 1060–1064

    Google Scholar 

  4. LiuLF & WangJC (1987) Proc. Natl. Acad. Sci. U.S.A. 84: 7024–7027

    Google Scholar 

  5. ThrashC, BankierAT, BarrelBG & SternglanzR (1985) Proc. Natl. Acad. Sci. U.S.A. 82: 4274–4278

    Google Scholar 

  6. UemuraT, MorinoK, UzawaS, ShiozaiK & YanagidaM (1987) Nucl. Acid Res. 23: 9727–9739

    Google Scholar 

  7. D'ArpaP, MachlinPS, RatrieIIIH, RothfieldNF, ClevelandDW & EarnshawWC (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 2543–2547

    Google Scholar 

  8. CoderoniS, PararelliM & GianfranceschiGL (1990) Int. J. Biochem. 227: 737–746

    Google Scholar 

  9. KjildsenE, MollerupS, BonvenBJ, BolundL & WestergaardO (1988) J. Mol. Biol. 202: 333–342

    Google Scholar 

  10. JaxelC, KohnKW & PommierY (1988) Nucl. Acid Res. 16: 11157–11170

    Google Scholar 

  11. GellertM (1981) Annu. Rev. Biochem. 50: 879–910

    Google Scholar 

  12. GotoT, LapisP & WangJC (1984) J. Biol. Chem. 259: 10422–10429

    Google Scholar 

  13. TraskDk, DiDonatoJA, MullerMT (1984) EMBO J. 3: 671–676

    Google Scholar 

  14. ChampouxJJ & AronoffR (1989) J. Biol. Chem. 264: 1010–1015

    Google Scholar 

  15. CastoraFJ & KellyWG (1986) Proc. Natl. Acad. Sci. U.S.A. 83: 1680–1684

    Google Scholar 

  16. JaxelC, KohnKW, WaniMC, WallME & PommierY (1989) Cancer Res. 49: 1465–1469

    Google Scholar 

  17. GuptaRS, GuptaR, EngB, LockRB, RossWE, HertzbergRP, CaranfaMJ & JohnsonRK (1988) Cancer Res. 48: 6404–6410

    Google Scholar 

  18. FerroAM, HigginsNP & OliveraBM (1983) J. Biol. Chem. 258: 6000–6003

    Google Scholar 

  19. McConauchyBL, YoungCS & ChampouxJJ (1981) Biochim Biophys. Acta 655: 1–8

    Google Scholar 

  20. CoderoniS, PaparelliM & GianfranceschiGL (1990) Mol. Biol. Rep. 14: 35–39

    Google Scholar 

  21. ChampouxJJ (1976) Proc. Natl. Acad. Sci. U.S.A. 73: 3488–3491

    Google Scholar 

  22. IshiiK, HasegawaT, FujisawaK & AndohT (1983) J. Biol. Chem. 258: 12727–12732

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coderoni, S., Paparelli, M. & Gianfranceschi, G.L. Optimum DNA relaxation reaction conditions for calf thymus DNA-Topoisomerase I are determined by specific enzyme features. Mol Biol Rep 14, 255–259 (1990). https://doi.org/10.1007/BF00429894

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429894

Key words

Navigation