Skip to main content
Log in

Kramer's sampling theorem for multidimensional signals and its relationship with Lagrange-type interpolations

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Kramer's sampling theorem, which is a generalization of the Whittaker-Shannon-Kotel'nikov (WSK) sampling theorem, enables one to reconstruct functions that are integral transforms of types other than the Fourier one from their sampled values. In this paper, we generalize Kramer's theorem toN dimensions (N ≥ 1) and show how the kernel function and the sampling points in Kramer's theorem can be generated. We then investigate the relationship between this generalization of Kramer's theorem andN-dimensional versions of both the WSK theorem and the Paley-Wiener interpolation theorem for band-limited signals. It is shown that the sampling series associated with this generalization of Kramer's theorem is nothing more than anN-dimensional Lagrange-type interpolation series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Butzer, “A Survey of the Whittaker-Shannon Sampling Theorem and Some of Its Extensions,”J. Math. Res. Exposition, vol. 3, 1983, pp. 185–212.

    Google Scholar 

  2. P. Butzer, W. Splettstöβer, and R. Stens, “The Sampling Theorem and Linear Prediction in Signal Analysis,”Jber. Deutsch. Math. Verein. Bd., 1988, pp. 1–70.

  3. A. Papoulis,Signal Analysis, McGraw-Hill, New York, 1977.

    Google Scholar 

  4. P. Weiss, “Sampling Theorems Associated with Sturm-Liouville Systems,”Bull. Am. Math. Soc., vol. 63, 1957, p. 242.

    Google Scholar 

  5. L. Campbell, “A Comparison of the Sampling Theorems of Kramer and Whittaker,”J. SIAM, vol. 12, 1964, pp. 117–130.

    Google Scholar 

  6. A. Jerri, “On the Equivalence of Kramer's and Shannon's Sampling Theorems,”IEEE Trans. Inform. Theory, vol. IT-15, 1969, pp. 497–499.

    Article  Google Scholar 

  7. H. Kramer, “A Generalized Sampling Theorem,”J. Math. Phys., vol. 38, 1959, pp. 68–72.

    Google Scholar 

  8. G. Watson,A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, England, 1962.

    Google Scholar 

  9. J. Higgins, “An Interpolation Series Associated with the Bessel-Hankel Transform,”J. London Math. Soc. (2), vol. 5, 1972, pp. 707–714.

    Google Scholar 

  10. A. Jerri, “A Note on Sampling Expansion for a Transform with Parabolic Cylindrical Kernal,”Inform. Sci., vol. 26, 1982, pp. 155–158.

    Article  Google Scholar 

  11. A. Jerri, “Sampling Expansion for Laguerre-L α p Transforms,”J. Res. Nat. Bur. Standards, Sec. B, vol. 80, 1976, pp. 415–418.

    Google Scholar 

  12. A. Jerri, “On the Application of Some Interpolating Functions in Physics,”J. Res. Nat. Bur. Standards, Sec. B, vol. 80, 1969, pp. 241–245.

    Google Scholar 

  13. A. Jerri, “Some Applications for Kramer's Generalized Sampling Theorem,”J. Eng. Math., vol. 3, 1969, pp. 103–105.

    Article  Google Scholar 

  14. F. Mehta, “A General Sampling Expansion,”Inform. Sci., vol. 16, 1978, pp. 4–46.

    Article  Google Scholar 

  15. F. Mehta, “Sampling Expansion for Band-Limited Signals through Some Special Functions,”J. Cybernetics, 1975, pp. 61–68.

  16. M. Rawn, “On Nonuniform Sampling Expansions Using Entire Interpolating Functions and on the Stability of Bessel-Type Sampling Expansions,”IEEE Trans. Inform. Theory, vol. 35, 1989, pp. 549–557.

    Article  Google Scholar 

  17. A. Zayed, “Sampling Expansion for the Continuous Bessel Transform,”J. Appl. Anal., vol. 27, 1988, pp. 47–64.

    Google Scholar 

  18. A. Papoulis,Systems and Transforms with Applications in Optics, McGraw-Hill, New York, 1968.

    Google Scholar 

  19. A. Jerri, “The Shannon Sampling Theorem—Its Various Extensions and Applications: A Tutorial Review,”Proc. IEEE, vol. 65, 11, 1977, pp. 1565–1596.

    Google Scholar 

  20. A. Zayed, G. Hinsen, and P. Butzer, “On Lagrange Interpolation and Kramer-Type Sampling Theorems Associated with Sturm-Liouville Problems,”SIAM J. Appl. Math., vol. 50, 1990, pp. 893–909.

    Article  Google Scholar 

  21. A. Zayed, “On Kramer's Sampling Theorem Associated with General Sturm-Liouville Problems and Lagrange Interpolation,”SIAM J. Appl. Math., vol. 5, 1991, pp. 575–604.

    Article  Google Scholar 

  22. R. Paley and N. Wiener,Fourier Transforms in the Complex Domain, Colloq. Publ., vol. 19, Am. Math. Soc., Providence, RI, 1934.

    Google Scholar 

  23. N. Levinson,Gap and Density Theorems, Am. Math. Soc. Colloq. Publ., vol. 26, Procidence, RI, 1940.

  24. R. Gosselin, “Singular Integrals and Cardinal Series,”Studia Math., vol. 44, 1972, pp. 39–45.

    Google Scholar 

  25. R. Gosselin, “On theL p Theory of Cardinal Series,”Ann. of Math., vol. 78, 1963, pp. 567–581.

    Google Scholar 

  26. J. Higgins, “A Sampling Theorem for Irregularly Spaced Sample Points,”IEEE Trans. Inform. Theory, vol. IT-22, 1976, pp. 621–622.

    Article  Google Scholar 

  27. K. Yao and J. Thomas, “On Some Stability and Interpolatory Properties of Nonuniform Sampling Expansions,”IEEE Trans. Circuit Theory, vol. CT-14, 1967, pp. 404–408.

    Google Scholar 

  28. J. Yen, “On Nonuniform Sampling of Bandwidth-Limited Signals,”IRE Trans. Circuit Theory, CT-3, 1956, pp. 251–257.

    Google Scholar 

  29. E. Parzen, “A Simple Proof and Some Extensions of Sampling Theorems,”Tech. Rep., vol. 7, Stanford University, Stanford, 1956.

    Google Scholar 

  30. P. Butzer and G. Hinsen, “Two-Dimensional Nonuniform Sampling Expansions—An Iterative Approach,” preprint.

  31. R. Butzer and G. Hinsen, “Reconstruction of Bounded Signals from Pseudo-Periodic, Irregularly Spaced Samples,” preprint.

  32. J. Clark, M. Palmer, and P. Lawrence, “A Transformation Method for the Reconstruction of Functions from Nonuniformly Spaced Samples,”IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-33, 1985, pp. 1151–1165.

    Google Scholar 

  33. R. Mersereau, “The Processing of Hexagonally Sampled Two Dimensional Signals,”Proc. IEEE, vol. 67, 1979, pp. 930–949.

    Google Scholar 

  34. R. Mersereau and T. Speake, “The Processing of Periodically Sampled Multidimensional Signals,”IEEE Trans. Acoust. Speech Signal Process., vol. ASSP-32, 1983, pp. 188–194.

    Article  Google Scholar 

  35. W. Montgomery, “K-Order Sampling ofN-Dimensional Band-Limited Functions,”Int. J. Contr., vol. 1, 1965, pp. 7–12.

    Google Scholar 

  36. D. Mugler and W. Splettstö∐er, “Reconstruction of Two Dimensional Signals from Irregularly Spaced Samples,”Proceedings 6 Aachner Symposium für Signaltheorie, Informatik Fachberichte 153, Springer-Verlag, New York, 1987, pp. 41–44.

    Google Scholar 

  37. D. Petersen and D. Middleton, “Sampling and Reconstruction of Wave Number-Limited Functions inN-Dimensional Euclidean Spaces,”Inform. and Control, vol. 5, 1962, pp. 279–323.

    Article  Google Scholar 

  38. R. Proesser, “A Multidimensional Sampling Theorem,”J. Math. Anal. Appl., vol. 16, 1966, pp. 574–584.

    Article  Google Scholar 

  39. W. Splettstö∐er, “Sampling Approximation of Continuous Functions with Multidimensional Domain,”IEEE Trans. Inform. Theory, vol. IT-28, 1982, pp. 809–814.

    Article  Google Scholar 

  40. J. Higgins, “Five Short Stories about the Cardinal Series,”Bull. Am. Math. Soc., vol. 12, 1985, pp. 45–89.

    Google Scholar 

  41. B. Sharma and F. Mehta, “Generalized Bandpass Sampling Theorem,”Math. Balkanica, vol. 6, 1976, pp. 204–217.

    Google Scholar 

  42. B. Levitan and I. Sargsjan,Introduction to Spectral Theory: Self-Adjoint Ordinary Differential Operators, Transl. Math. Monographs, vol. 39, Am. Math. Soc., Providence, RI, 1975.

    Google Scholar 

  43. E. Titchmarsh,Eigenfunction Expansions Associated with Second Order Differential Equations, Part 1, 2nd ed., Clarendon Press, Oxford, 1962.

    Google Scholar 

  44. E. Titchmarsh,Eigenfunctions Expansions Associated with Second Order Differential Equations, Part II, Clarendon Press, Oxford, 1958.

    Google Scholar 

  45. F. Reza,An Introduction to Information Theory, McGraw-Hill, New York, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zayed, A.I. Kramer's sampling theorem for multidimensional signals and its relationship with Lagrange-type interpolations. Multidim Syst Sign Process 3, 323–340 (1992). https://doi.org/10.1007/BF01940228

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01940228

Key Words

Navigation