Skip to main content
Log in

Micro-electromechanical Systems for Nano-science

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Micro-electromechanical systems are ideal tools for nano-science because they bridge the gap between the nano- and the macro-world. Moreover, several of these instruments can be operated in parallel to either increase the throughput or to provide redundancy. The majority of the components of such a system have dimensions above the nanometer scale. Still, some require placement and pattern accuracy well below this limit. This will be highlighted in a short review of a few examples: Scanning optical near field microscope probe fabrication, where an aperture of 50 nm in diameter was incorporated at the probing tip; parallel scanning force microscope for measuring dust particles on Mars where redundancy is essential; and a miniaturized electron column for parallel electron beam lithography, where the throughput needs to be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger R., Lang H.P., Gerber Ch., Gimzewski J.K., Fabian J.H., Scandella L., Meyer E. & Güntherodt H.-J., 1998. Chem. Phys. Let. 294, 363.

    Google Scholar 

  • Chang T.H.P., Kern D.P. & McCord M.A., 1989. J. Vac. Sci. Technol. B7 1855.

    Google Scholar 

  • Despont M., Staufer U., Stebler C., Germann R. & Vettiger P., 1995. Microelectronic Eng. 27, 467.

    Google Scholar 

  • Despont M., Gross H., Arrouy F., Stebler C. & Staufer U., 1996. Sensors and Actuators A55, 219.

    Google Scholar 

  • Gimzewski J.-K., Gerber Ch., Meyer E. & Schlittler R.R., 1994. Chem Phys. Lett. 217, 589.

    Google Scholar 

  • MEC, 2000. http://mars.jpl.nasa.gov/2001/lander/meca/

  • OSH, 1974. OSHA Fact Sheet No. 96–54. http://www.oshaslc. gov/SLTC/silicacrystalline/silica criteria/

  • Pohl D. W., Denk W. & Lanz M., 1984. Appl. Phys. Lett. 44, 651.

    Google Scholar 

  • Schürmann G., Indermühle P.F., Staufer U. & de Rooij N.F., 1999. Surf. Interface Anal. 27, 299.

    Google Scholar 

  • Schürmann G., Noell W., Staufer U. & de Rooij N.F., 2000. Ultramicroscopy 82, 33.

    Google Scholar 

  • Stebler C., Despont M., Staufer U., Chang T.H.P., Lee K.Y. & Rishton S.A., 1996. Microelectronic Eng. 30, 45.

    Google Scholar 

  • Stebler C., Despont M. & Staufer U., 1996. J. Phys III France 6, 1435.

    Google Scholar 

  • Stebler C., Pfeffer T., Staufer U. & de Rooij N.F., 1999. Microelectronic Eng. 46, 401.

    Google Scholar 

  • Tortonese M., Barett R.C. & Quate C.F., 1993. Appl. Phys. Lett. 62, 834.

    Google Scholar 

  • Vettiger P., Brugger J., Despont M., Drechsler U., Dürig U., Häberle W., Lutwyche M., Rothuizen H., Stutz R., Widmer R. & Binnig G., 1999. Microelectronic Eng. 46, 11–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staufer, U., Beuret, C., Gautsch, S. et al. Micro-electromechanical Systems for Nano-science. Journal of Nanoparticle Research 2, 413–418 (2000). https://doi.org/10.1023/A:1010026531885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010026531885

Navigation