Skip to main content
Log in

Lectin genes from the legume Medicago truncatula

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We report the cloning and characterization of two lectin genes from Medicago truncatula, designated Mtlec1 and Mtlec2. The two genes show a high degree of homology and apparently belong to a small multigene family. Mtlec1 appears to encode a functional lectin with 277 amino acids, whereas Mtlec2 is probably non-functional, since a frameshift mutation (insertion of two nucleotides) leads to premature translation termination after only 98 amino acids. The deduced amino acid sequence of the polypeptide MtLEC1 suggests that this lectin is a metalloprotein with Glc/Man specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T: Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8: 40–49 (1990).

    Google Scholar 

  2. Barker DG, Gallusci P, Lullien V, Khan H, Ghérardi M, Huguet T: Identification of two groups of leghemoglobin genes in alfalfa (Medicago sativa) and a study of their expression during root nodule development. Plant Mol Biol 11: 761–772 (1988).

    Google Scholar 

  3. Bohlool BB, Schmidt EL: Lectins: A possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185: 269–271 (1974).

    Google Scholar 

  4. Bourne Y, Abergel C, Cambillau C, Frey M, Rougé P, Fontecilla-Camps JC: X-ray crystal structure determination and refinement at 1.9 Å resolution of isolectin I from the seeds of Lathyrus ochrus. J Mol Biol 214: 571–584 (1990).

    PubMed  Google Scholar 

  5. Bourne Y, Roussel A, Frey M, Rougé P, Fontecilla-Camps JC, Cambillau C: Three-dimensional structures of complexes of Lathyrus ochrus isolectin I with glucose and mannose: fine specificity of the monosaccharide-binding site. Proteins 8: 365–376 (1990).

    PubMed  Google Scholar 

  6. Cunningham BA, Hemperly JJ, Hopp TP, Edelmann GM: Favin versus Concanavalin A: Circularly permuted amino acid sequences. Proc Natl Acad Sci USA 76: 3218–3222 (1979).

    Google Scholar 

  7. Díaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg BJJ, Kijne JW: Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579–581 (1989).

    Google Scholar 

  8. van Driessche E: Structure and function of Leguminosae lectins. In: Franz H (ed) Advances in Lectin Research, vol. 1. Springer-Verlag, Berlin (1988).

    Google Scholar 

  9. Einspahr H, Parks EH, Suguna K, Subramanian E, Suddath FL: The crystal structure of pea lectin at 3.0 Å resolution. J Biol Chem 261: 16518–16527 (1986).

    PubMed  Google Scholar 

  10. Etzler ME: Plant lectins: Molecular and biological aspects. Annu Rev Plant Physiol 36: 209–234 (1986).

    Google Scholar 

  11. Feinberg AP, Vogelstein B: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  12. Gallusci P, Dedieu A, Journet EP, Huguet T, Barker DG: Synchronous expression of leghemoglobin genes in Medicago truncatula during nitrogen-fixing root nodule development and response to exogenously supplied nitrate. Plant Mol Biol 17: 335–349 (1991).

    PubMed  Google Scholar 

  13. Gatehouse JA, Bown D, Evans IM, Gatehouse LN, Jobes D, Preston P, Croy RRD: Sequence of the seed lectin gene from pea (Pisum sativum L.). Nucl Acids Res 15: 7642 (1987).

    PubMed  Google Scholar 

  14. Heidecker G, Messing J: Structural analysis of plant genes. Annu Rev Plant Physiol 37: 439–466 (1986).

    Google Scholar 

  15. Heijne Gvon: A new method for predicting signal sequence cleavage sites. Nucl Acids Res 14: 4683–4690 (1986).

    PubMed  Google Scholar 

  16. Henikoff S: Unidirectional digestion with endonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359 (1984).

    Article  PubMed  Google Scholar 

  17. Higgins TJV, Chandler PM, Zurawski G, Button SC, Spencer D: The biosynthesis and primary structure of pea seed lectin. J Biol Chem 258: 9544–9549 (1983).

    PubMed  Google Scholar 

  18. Kamberger W: Binding specificity and purification of Medicago sativa lectin. In: Hoffmann-Ostenhof D (ed) Affinity Chromatography, pp. 295–298. Pergamon Press, Oxford (1978).

    Google Scholar 

  19. Konami I, Yamamoto K, Osawa T: The primary structure of the Lotus tetragonolobus lectin. FEBS Lett 268: 281–286 (1990).

    Article  PubMed  Google Scholar 

  20. Kraft R, Tardiff J, Krauter KS, Leinwand LA: Using mini-prep plasmid DNA for sequencing double stranded templates with SequenaseTM. BioTechniques 6: 544–547 (1988).

    PubMed  Google Scholar 

  21. Lerouge P, Roche P, Faucher C, Mailet F, Truchet G, Promé JC, Dénarié J: Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glycosamine oligosaccharide signal. Nature 344: 781–784 (1990).

    Article  PubMed  Google Scholar 

  22. Richardson M, Rougé P, Sousa-Cavada B, Yarwood A: The amino acid sequences of the α1 and α2 subunits of the isolectins from seeds of Lathyrus ochrus (L.). FEBS Lett 175: 76–81 (1984).

    Article  PubMed  Google Scholar 

  23. Ripley LS: Frameshift mutation: Determinants of specificity. Annu Rev Genet 24: 189–213 (1990).

    Article  PubMed  Google Scholar 

  24. Sharon N, Lis H: Lectins as cell recognition molecules. Science 246: 227–246 (1989).

    PubMed  Google Scholar 

  25. Sharon N, Lis H: Legume lectins — A large family of homologous proteins. FASEB J 4: 3198–3208 (1990).

    PubMed  Google Scholar 

  26. Strosberg AD, Buffard D, Lauwereys M, Foriers A: Legume lectins: A large family of homologous proteins. In: Liener IE, Sharon N, Goldstein IJ (eds) The Lectins: Properties, Functions and Applications in Biology and Medicine, pp. 249–264. Academic Press, Orlando, FL (1986).

    Google Scholar 

  27. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, de Billy F, Promé J-C, Dénarié J: Sulphated lipo-oligosac-charide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673 (1991).

    Article  Google Scholar 

  28. Vodkin LO, Rhodes PR, Goldberg RB: cA lectin gene insertion has the structural features of transposable element. Cell 34: 1023–1031 (1983).

    Article  PubMed  Google Scholar 

  29. Yarwood A, Richardson M, Sousa-Cavada B, Rougé P: The complete amino acid sequences of the β1 and β2 subunits of the isolectins LoLI and LoLII from seeds of Lathyrus ochrus (L.). FEBS Lett 184: 104–109 (1985).

    Article  Google Scholar 

  30. Young NM, Johnston RAZ, Watson DC: The amino acid sequence of peanut agglutinin. Eur J Biochem 196: 631–637 (1991).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauchrowitz, M.A., Barker, D.G., Nadaud, I. et al. Lectin genes from the legume Medicago truncatula . Plant Mol Biol 19, 1011–1017 (1992). https://doi.org/10.1007/BF00040532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040532

Key words

Navigation