Skip to main content
Log in

Functional expression and molecular characterization of AtUBC2-1, a novel ubiquitin-conjugating enzyme (E2) from Arabidopsis thaliana

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The first member of a novel subfamily of ubiquitin-conjugating E2-proteins was cloned from a cDNA library of Arabidopsis thaliana. Genomic blots indicate that this gene family (AtUBC2) consists of two members and is distinct from AtUBC1, the only other E2 enzyme known from this species to date (M.L. Sullivan and R.D. Vierstra, Proc. Natl. Acad. Sci. USA 86 (1989) 9861-9865). The cDNA sequence of AtUBC2-1 extends over 794 bp which would encode a protein of 161 amino acids and a calculated molecular mass of 18.25 kDa. The protein encoded by AtUBC2-1 is shown to accept 125I-ubiquitin from wheat E1 enzymes, when expressed from Escherichia coli hosts as fusion protein carrying N-terminal extensions. It is deubiquitinated in the presence of lysine and, by these criteria, is considered a functional E2 enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current Protocols in Molecular Biology. Green Publishing Associates/Wiley-Interscience, New York (1987).

    Google Scholar 

  2. Bachmair A, Varshavsky A: The degradation signal in a short-lived protein. Cell 56: 1019–1032 (1989).

    Article  PubMed  Google Scholar 

  3. Ball E, Karlik CC, Beall CJ, Saville DL, Sparrow JC: Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell 51: 221–228 (1987).

    Article  PubMed  Google Scholar 

  4. Bartling D, Weiler EW: Leucine aminopeptidase from Arabidopsis thaliana. Eur J Biochem 205: 425–431 (1992).

    PubMed  Google Scholar 

  5. Bartling D, Seedorf M, Mithöfer A, Weiler EW: Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. Eur J Biochem 205: 417–424 (1992).

    PubMed  Google Scholar 

  6. Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72: 248–254 (1976).

    Article  PubMed  Google Scholar 

  7. Brent R, Ptashne M: Mechanism of the lexA gene product. Proc Natl Acad Sci USA 78: 4204–4209 (1981).

    PubMed  Google Scholar 

  8. Callis J, Raasch JA, Vierstra RD: Ubiquitin extension proteins of Arabidopsis chaliana. J Biol Chem 265: 12486–12493 (1990).

    Google Scholar 

  9. Ciechanover A, Heller H, Elias S, Haas AL, Hershko A: ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci USA 77: 1365–1368 (1980).

    PubMed  Google Scholar 

  10. Ciechanover A, Elias S, Heller H, Hershko A: ‘Covalent affinity’ purification of ubiquitin-activating enzyme. J Biol Chem 257: 2537–2542 (1982).

    PubMed  Google Scholar 

  11. Cook WJ, Jeffrey LC, Sullivan ML, Vierstra RD: Threedimensional structure of a ubiquitin-conjugating enzyme (E2). J Biol Chem 267: 15116–15121 (1992).

    PubMed  Google Scholar 

  12. Finley D, Chau V: Ubiquitination. Annu Rev Cell Biol 7: 25–69 (1991).

    PubMed  Google Scholar 

  13. Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A, Byers B: The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241: 1331–1335 (1988).

    PubMed  Google Scholar 

  14. Hatfield PM, Vierstra RD: Ubiquitin-dependent proteolytic pathway in wheat germ: isolation of multiple forms of ubiquitin-activating enzyme, E1. Biochem 28: 735–742 (1989).

    Google Scholar 

  15. Higgins DG, Sharp PM: Fast and sensitive multiple sequence alignements on a microcomputer. CABIOS 5: 151–153 (1988).

    Google Scholar 

  16. Hershko A, Ciechanover A: The ubiquitin system for protein degradation. Annu Rev Biochem 61: 761–807 (1992).

    Google Scholar 

  17. Hochstrasser M, Varshavsky A: In vivo degradation of a transcriptional regulator: The yeast α2 repressor. Cell 61: 697–708 (1990).

    Article  PubMed  Google Scholar 

  18. Höhfeld J, Veenhuis M, Kunau WH: PAS3, a Saccharomyces cerevisiae gene encoding a peroxisomal integral membrane protein essential for peroxisome biogenesis. J Cell Biol 114: 1167–1178 (1991).

    Article  PubMed  Google Scholar 

  19. Jabben M, Shanklin J, Vierstra RD: Ubiquitin-phytochrome conjugates. J Biol Chem 264: 4998–5005 (1989).

    PubMed  Google Scholar 

  20. Jentsch S, McGrath JP, Varshavsky A: The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329: 131–134 (1987).

    Article  PubMed  Google Scholar 

  21. Jentsch S: Ubiquitin-dependent protein degradation: a cellular perspective. Trends Cell Biol 2: 98–103 (1992).

    Article  PubMed  Google Scholar 

  22. Jentsch S: The ubiquitin-conjugation system. Annu Rev Genet 26: 179–207 (1992).

    Article  PubMed  Google Scholar 

  23. Jungmann J, Reins HA, Schobert C, Jentsch S: Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361: 369–371 (1993).

    Article  PubMed  Google Scholar 

  24. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    PubMed  Google Scholar 

  25. Liu Z, Diaz LA, Haas AL, Giudice GJ: cDNA cloning of a novel human ubiquitin carrier protein. J Biol Chem 267: 15829–15835 (1992).

    PubMed  Google Scholar 

  26. Meyer C, Feyerabend M, Weiler EW: Fusicoccin-binding proteins in Arabidopsis thaliana (L.) Heynh. Plant Physiol 89: 692–699 (1989).

    Google Scholar 

  27. Nocker SV, Vierstra RD: Cloning and characterization of a 20-kDa ubiquitin carrier protein from wheat that catalyzes multiubiquitin chain formation in vitro. Proc Natl Acad Sci USA 88: 10297–10301 (1991).

    PubMed  Google Scholar 

  28. Pickart CM, Rose IA: Functional heterogeneity of ubiquitin carrier proteins. J Biol Chem 260: 1573–1581 (1985).

    PubMed  Google Scholar 

  29. Raymond CK, O'Hara PJ, Eichinger G, Rothman JH, Stevens TH: Molecular analysis of the yeast VPS3-gene and the role of its product in vacuolar protein sorting and vacuolar segregation during the cell cycle. J Cell Biol 111: 877–892 (1990).

    Article  PubMed  Google Scholar 

  30. Schägger H, von Jagow G: Tricine-sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379 (1987).

    PubMed  Google Scholar 

  31. Seufert W, Jentsch S: Ubiquitin-conjugating enzyme UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9: 543–550 (1990).

    PubMed  Google Scholar 

  32. Seufert W, McGrath JP, Jentsch S: UBC1 encodes a novel member of an essential subfamily of yeast ubiquitinconjugating enzymes involved in protein degradation. EMBO J 9: 4535–4541 (1990).

    PubMed  Google Scholar 

  33. Seufert W, Jentsch S. In vivo function of the proteasome in the ubiquitin pathway. EMBO J: 11 3077–3080 (1992).

    PubMed  Google Scholar 

  34. Short JA, Fernandez JM, Sorge JA, Huse WD: λ ZAP: a bacteriophage λ expression vector with in vivo excision properties. Nucl Acids Res 16: 7583–7600 (1988).

    PubMed  Google Scholar 

  35. Sullivan ML, Vierstra RD. A ubiquitin carrier protein from wheat is structurally and functionally similar to the yeast DNA repair enzyme encoded by RAD6. Proc Natl Acad Sci USA 86: 9861–9865 (1989).

    PubMed  Google Scholar 

  36. Sullivan ML, Vierstra RD: Cloning of a 16kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. J Biol Chem 266: 23878–23885 (1991).

    PubMed  Google Scholar 

  37. Sung P, Prakash S, Prakash L: Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc Natl Acad Sci USA 87: 2695–2699 (1990).

    PubMed  Google Scholar 

  38. Varshavsky A: The N-end rule. Cell 69: 725–735 (1992).

    Google Scholar 

  39. Veierskov B, Ferguson JB: Ubiquitin conjugating activity in leaves and isolated chloroplasts from Avena sativa L. during senescence. J Plant Physiol 138: 608–613 (1991).

    Google Scholar 

  40. Vierstra RD. Demonstration of ATP-dependent, ubiquitin-conjugating activities in higher plants. Plant Physiol 84: 332–336 (1987).

    Google Scholar 

  41. Wiebel FF, Kunau WH: The Pas2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes. Nature 359: 73–76 (1992).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartling, D., Rehling, P. & Weiler, E.W. Functional expression and molecular characterization of AtUBC2-1, a novel ubiquitin-conjugating enzyme (E2) from Arabidopsis thaliana . Plant Mol Biol 23, 387–396 (1993). https://doi.org/10.1007/BF00029013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029013

Key words

Navigation