Skip to main content
Log in

Genetic and molecular dissection of quantitative traits in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Recent progress in the generation of a molecular genetic map and markers for rice has made possible a new phase of mapping individual genes associated with complex traits. This type of analysis is often referred to as quantitative trait locus (QTL) analysis. Increasing numbers of QTL analyses are providing enormous amounts of information about QTLs, such as the numbers of loci involved, their chromosomal locations and gene effects. Clarification of genetic bases of complex traits has a big impact not only on fundamental research on rice plant development, but it also has practical benefits for rice breeding. In this review, we summarize recent progress of QTL analysis of several complex traits in rice. A strategy for positional cloning of genes at QTLs is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn SN, Tanksley SD: Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90: 7980–7984 (1993).

    Google Scholar 

  2. Ahn SN, Bollich CN, McClung AM, Tanksley SD: RFLP analysis of genomic regions associated with cooked-kernel elongation in rice. Theor Appl Genet 87: 27–32 (1993).

    Google Scholar 

  3. Beavis WD, Grant D, Albertsen M, Fincher R: Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83: 141–145 (1991).

    Google Scholar 

  4. Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD: Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251–1274 (1994).

    Google Scholar 

  5. Champoux MC, Wang G, Sarkarung S, Mackill DJ, O'Toole JC, Huang N, McCouch SR: Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90: 969–981 (1995).

    Google Scholar 

  6. deVicente MC, Tanksley SD: QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134: 585–596 (1993).

    Google Scholar 

  7. Dorweiler J, Stec A, Kermicle J, Doebley J: Teosinte glume architecture 1. A genetic locus controlling a key step in maize evolution. Science 262: 233–235 (1993).

    Google Scholar 

  8. Edwards MD, Helentjaris T, Wright S, Stuber CW: Molecularmarker-facilitated investigations of quantitative trait loci in maize. Theor Appl Gene 83: 765–774 (1992).

    Google Scholar 

  9. Eshed Y, Zamir D: Anintrogression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141: 1147–1162 (1995).

    Google Scholar 

  10. Havukkala I, Ichimura H, Nagamura Y, Sasaki T: Rice genome analysis by integration of sequencing and mapping data. J Biotechnol 41: 139–148 (1995).

    Google Scholar 

  11. Hiei Y, Ohta S, Komari T, Kumashiro T: Efficient transformation of rice (Oryza sativaL.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271–282 (1994).

    Google Scholar 

  12. Howell PM, Marshall DF, Lydiate DJ: Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39: 348–358 (1996).

    Google Scholar 

  13. Ideta O, Yoshimura A, Iwata N: Integration of RFLP and conventional linkage maps in rice. Proceedings of 3rd International Rice Genetics Symposium, International Rice Research Institute, Manila (in press).

  14. Izawa T, Shimamoto K: Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1: 95–99 (1996).

    Google Scholar 

  15. Jansen RC: Complex plant traits: time for polygenic analysis. Trends Plant Sci 1: 89–94 (1996).

    Google Scholar 

  16. Kilian A, Kudrna DA, Kleinhofs A, Yano M, Kurata N, Steffenson B, Sasaki T: Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucl Acids Res 23: 2729–2733 (1995).

    Google Scholar 

  17. Kinoshita T: Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newsl 12: 9–153 (1995).

    Google Scholar 

  18. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y: A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet 8: 365–372 (1994).

    Google Scholar 

  19. Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, Gale M: Conservation of genome structure between rice and wheat. Bio/technology 12: 276–278 (1994).

    Google Scholar 

  20. Lagercrantz U, Putterill J, Coupland G, Lydiate D: Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9: 13–20 (1996).

    Google Scholar 

  21. Lander ES, Botstein D: Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199 (1989).

    Google Scholar 

  22. Li Z, Pinson SRM, Marchetti MA, Stansel JW, Park WD: Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet 91: 382–388 (1995)

    Google Scholar 

  23. Li Z, Pinson SRM, Stansel JW, Park WD: Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativaL.). Theor Appl Genet 91: 374–381 (1995).

    Google Scholar 

  24. Lin YR, Schertz KF, Paterson AH: Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141: 391–411 (1995).

    Google Scholar 

  25. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD: Mapbased cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432–1436 (1993).

    Google Scholar 

  26. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD: Molecular mapping of rice chromosomes. Theor Appl Genet 76: 815–829 (1998).

    Google Scholar 

  27. McCouch SR, Doerge RW: QTL mapping in rice. Trends Genet 11: 482–487 (1995).

    Google Scholar 

  28. Monna L, Miyao A, Zhong HS, Yano M, Iwamoto M, Umehara Y, Kurata N, Hayasaka H, Sasaki T: Saturation mapping with subclones of YACs: DNA marker production targeting the rice blast disease resistance gene, Pi-b. Theor Appl Genet (in press).

  29. Moore G, Devos KM, Wang Z, Gale MD: Grasses, line up and form a circle. Curr Biol 5: 737–739 (1995).

    Google Scholar 

  30. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD: Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726 (1988).

    Google Scholar 

  31. Paterson AH, Deverna JW, Lanini B, Tanksley SD: Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124: 735–742 (1990).

    Google Scholar 

  32. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD: Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127: 181–197 (1991).

    Google Scholar 

  33. Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE: Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269: 1714–1718 (1995).

    Google Scholar 

  34. Paterson AH: Molecular dissection of quantitative traits: progress and prospects. Genome Res 5: 321–333 (1995).

    Google Scholar 

  35. Putterill J, Robson F, Lee K, Coupland G: The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847–857 (1995).

    Google Scholar 

  36. Ramsay LD, Jennings DE, Bohuon EJR, Arthur AE, Lydiate DJ, Kearsey MJ, Marshall DF: The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 39: 558–567 (1996).

    Google Scholar 

  37. Ray JD, Yu L, McCouch SR, Champoux MC, Wang G, Nguyen HT: Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativaL.). Theor Appl Genet 92: 627–636 (1996).

    Google Scholar 

  38. Redona ED, Mackill DJ: Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theor Appl Genet 92: 395–402 (1996).

    Google Scholar 

  39. Redona ED, Mackill DJ: Molecular mapping of quantitative trait loci in japonica rice. Genome 39: 395–403 (1996).

    Google Scholar 

  40. Saito A, Yano M, Kishimoto N, Nakagahra M, Yoshimura A, Saito K, Kuhara S, Ukai Y, Kawase M, Nagamine T, Yoshimura S, Ideta O, Ohsawa R, Hayano Y, Iwata N, Sugiura M: Linkage map of restriction fragment length polymorphism loci in rice. Japan J Breed 41: 665–670 (1991).

    Google Scholar 

  41. Saito K, Miura K, Nagano K, Hayano-Saito Y, Saito A, Araki H, Kato A: Chromosomal location of quantitative trait loci for cool tolerance at the booting stage in rice variety ‘Norin-PL8’. Breed Sci 45: 337–340 (1995).

    Google Scholar 

  42. Sasaki T, Song J, Koga-Ban Y, Matsui E, Fang F, Higo H, Nagasaki H, Hori M, Miya M, Murayama-Kayano E, Takiguchi T, Takasuga A, Niki T, Ishimaru K, Ikeda H, Yamamoto Y, Mukai Y, Ohta I, Miyadera N, Havukkala I, Minobe Y: Toward cataloguing all rice genes: large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J 6: 615–624 (1994).

    Google Scholar 

  43. Sax K: The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8: 552–560 (1923).

    Google Scholar 

  44. Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES: Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823–839 (1992)

    Google Scholar 

  45. Tanksley SD: Mapping polygenes. Annu Rev Genet 27: 205–233 (1993).

    Google Scholar 

  46. Tanksley SD, Ganal MW, Martin GB: Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11: 63–68 (1995).

    Google Scholar 

  47. Tanksley SD, Nelson JC: Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92: 191–203 (1996).

    Google Scholar 

  48. Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T: Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92: 213–224 (1996).

    Google Scholar 

  49. Today JM: Location of polygenes. Nature 191: 368–370 (1961).

    Google Scholar 

  50. Tsunematsu H, Yoshimura A, Harushima Y, Nagamura Y, Kurata N, Yano M, Sasaki T, Iwata N: RFLP framework map using recombinant inbred lines in rice. Breed Sci (in press)

  51. Umehara Y, Inagaki A, Tanoue H, Yasukouch Y, Nagamura Y, Saji S, Otsuki Y, Fujimura T, Kurata N, Minobe Y: Construction and characterization of a rice YAC library for physical mapping. Mol Breed 1: 79–89 (1995).

    Google Scholar 

  52. Umehara Y, Tanoue H, Kutrata N, Ashikawa I, Minobe Y, Sasaki T: An ordered yeast artificial chromosome library covering over half of rice chromosome 6. Genome Res (in press).

  53. Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ: RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136: 1421–1434 (1994).

    Google Scholar 

  54. Wu P, Zhang G, Ladha JK, McCouch SR, Huang N: Molecularmarker-facilitated investigation on the ability to stimulate N2 fixation in the rhizosphere by irrigated rice plants. Theor Appl Genet 91: 1177–1183 (1995).

    Google Scholar 

  55. Xiao J, Li J, Yuan L, Tanksley SD: Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140: 745–754 (1995).

    Google Scholar 

  56. Xiao J, Li J, Yuan L, Tanksley SD: Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92: 230–244 (1996).

    Google Scholar 

  57. Yano M, Harushima Y, Lin SY, Kuboki Y, Shomura A, Shimano T, Antonio BA, Inoue T, Kajiya H, Kawamura Y, Kishida T, Nagamura Y: Strategy for genetic dissection of quantitative traits into single mendelian factors using DNA makers. Rice Genome 3(2): 5 (1994).

    Google Scholar 

  58. Yano M, Harushima Y, Nagamura Y, Kurata N, Sasaki T, Minobe Y: QTL analysis as an aid to tagging genes conferring heading date in rice. Proceedings of 3rd International Rice Genetics Symposium, International Rice Research Institute, Manila (in press).

  59. Yano M, Nagamura Y, Kurata N, Sasaki T: Genetic linkage map of DNA markers and its application to genetic analysis in rice. Gamma Field Symposia No. 34, Institute of Radiation Breeding (in press).

  60. Yano M, Nagamura Y, Kurata N, Sasaki T, Minobe Y: Toward the construction of an integrated genetic and physical map of rice. In: Genomes of Plants and Animals: 21st Stadler Genetics Symposium, pp. 57–71. Plenum Press, New York (1996).

    Google Scholar 

  61. Yamamoto T, Kuboki Y, Lin SY, Shimano T, Shomura A, Sato M, Yano M, Sasaki T: Fine mapping and characterization of quantitative trait loci of heading date in rice. Abstract for Plant Genome IV: 57 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yano, M., Sasaki, T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35, 145–153 (1997). https://doi.org/10.1023/A:1005764209331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005764209331

Navigation