Skip to main content
Log in

Caspase-like protease involvement in the control of plant cell death

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cell death as a highly regulated process has now been recognized to be an important, if not essential, pathway that is ubiquitous in all multicellular eukaryotes. In addition to playing key roles in the morphogenesis and sculpting of the organs to give rise to highly specialized forms and shapes, cell death also participates in the programmed creation of specialized cell types for essential functions such as the selection of B cells in the immune system of mammals and the formation of tracheids in the xylem of vascular plants. Studies of apoptosis, the most well-characterized form of animal programmed cell death, have culminated in the identification of a central tripartite death switch the enzymatic component of which is a conserved family of cysteine proteases called caspases. Studies in invertebrates and other animal models suggest that caspases are conserved regulators of apoptotic cell death in all metazoans. In plant systems, the identities of the main executioners that orchestrate cell death remain elusive. Recent evidence from inhibitor studies and biochemical approaches suggests that caspase-like proteases may also be involved in cell death control in higher plants. Furthermore, the mitochondrion and reactive oxygen species may well constitute a common pathway for cell death activation in both animal and plant cells. Cloning of plant caspase-like proteases and elucidation of the mechanisms through which mitochondria may regulate cell death in both systems should shed light on the evolution of cell death control in eukaryotes and may help to identify essential components that are highly conserved in eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W. and Yuan, J. 1996. Human ICE/CED-3 protease nomenclature. Cell 87: 171.

    Google Scholar 

  • Aravind, L., Dixit, V.M. and Koonin, E. 1999. The domains of death: evolution of the apoptosis machinery. Trends Biochem. Sci. 24: 47–53.

    Google Scholar 

  • Asoh, S., Nishimaki, K., Nanbu-Wakao, R. and Ohta, S. 1998. A trace amount of the human pro-apoptotic factor Bax induces bacterial death accompanied by damage of DNA. J. Biol. Chem. 273: 11384–11391.

    Google Scholar 

  • Balk, J., Leaver, C.J. and McCabe, P. 1999. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett. 463: 151–154.

    Google Scholar 

  • Blackstone, N.W. and Green, D.R. 1999. The evolution of a mechanism of cell suicide. BioEssays 21: 84–88.

    Google Scholar 

  • Bump, N.J., Hackett, M., Hugunin, M., Seshagiri, S., Brady, K., Chen, P., Ferenz, C., Franklin, S., Ghayur, T., Li, P., Licari, P., Mankovich, J., Shi, L., Greenberg, A.H., Miller, L.K. and Wong, W.W. 1995. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269: 1885–1888.

    Google Scholar 

  • Chautan, M., Chazal, G., Cecconi, F., Gruss, P. and Golstein, P. 1999. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol. 9: 967–970.

    Google Scholar 

  • Chen, P., Rodriguez, A., Erskine, R., Thach, T., and Abrams, J.M. 1998. Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev. Biol. 201: 202–216.

    Google Scholar 

  • Chinnaiyan, A.M., O'Rourke, K., Lane, B.R. and Dixit, V.M. 1997. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275: 1122–1126.

    Google Scholar 

  • Chivasa, S. and Carr, J.P. 1998. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell 10: 1489–1498.

    Google Scholar 

  • Clem, R.J., Hardwick, J.M. and Miller, L.K. 1996. Anti-apoptotic genes of baculoviruses. Cell Death Differ. 3: 9–16.

    Google Scholar 

  • Conradt, B. and Horvitz, R.H. 1998. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93: 519–529.

    Google Scholar 

  • Cryns, V. and Yuan, J. 1998. Proteases to die for. Genes and Development 12: 1551-1570.

    Google Scholar 

  • D'silva, I., Pirier, G.G. and Heath, M.C. 1998. Activation of cysteine proteases in cowpea plants during the hypersensitive response, a form of programmed cell death. Exp. Cell Res. 245: 389–399.

    Google Scholar 

  • del Pozo, O. and Lam, E. 1998. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8: 1129–1132.

    Google Scholar 

  • Deveraux, Q.L. and Reed, J.C. 1997. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388: 300–304.

    Google Scholar 

  • Dorstyn, L., Colussi, P.A., Quinn, L.M., Richardson, H., and Kumar, S. 1999. DRONC, an ecdysone-inducible Drosophila caspase. Proc. Natl. Acad. Sci. USA 96: 4307–4312.

    Google Scholar 

  • Ellis, H.M. and Horvitz, R.H. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817–829.

    Google Scholar 

  • Fisher, A.J., de la Cruz, W., Zoog, S.J., Schneider, C.L. and Friesen, P.D. 1999. Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition. EMBO J. 18: 2031–2039.

    Google Scholar 

  • Glazener, J.A., Orlandi, E.W. and Baker, J.C. 1996. The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiol. 110: 759–763.

    Google Scholar 

  • Gopalan, S., Wei, W. and He, S.Y. 1996. hrp gene-dependent induction of hin1: a plant gene activated rapidly by both harpins and the avrPto gene-mediated signal. Plant J. 10: 591–600.

    Google Scholar 

  • Green, D. and Kroemer, G. 1998. The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol. 8: 267–271.

    Google Scholar 

  • Gross, A., Pilcher, K., Blachly-Dyson, E., Basso, E., Jockel, J., Bassik, M.C., Korsmeyer, S.J. and Forte, M. 2000. Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-XL. Mol. Cell. Biol. 20: 3125–3136.

    Google Scholar 

  • Hengartner, M.O., Ellis, R.E., and Horvitz, R.H. 1992. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499.

    Google Scholar 

  • Hu, Y., Benedict, M.A., Ding, L. and Nunez, G. 1999. Role of cytochrome c and ATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 18: 3586–3595.

    Google Scholar 

  • Jurgensmeier, J.M., Krajewski, S., Armstrong, R.C., Wilson, G.M., Oltersdorf, T., Fritz, L.C., Reed, J.C., and Ottilie, S. 1997. Baxand Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell. 8: 325–339.

    Google Scholar 

  • Kanuka, H., Sawamoto, K., Inohara, N., Matsuno, K., Okano, H. and Miura, M. 1999. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol. Cell 4: 757–769.

    Google Scholar 

  • Kawai, M., Pan, L., Reed, J.C. and Uchimiya, H. 1999. Evolutionarily conserved plant homologue of the Bax Inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett. 464: 143–147.

    Google Scholar 

  • Kluck, R.M., Ellerby, L.M., Ellerby, M.H., Naiem, S., Yaffe, M.P., Margoliash, E., Bredesen, D., Mauk, G.A., Sherman, F. and Newmeyer, D.D. 2000. Determinants of cytochrome c pro-apoptotic activity. J. Biol. Chem. 275: 16127–16133.

    Google Scholar 

  • Korsmeyer, S.J. 1995. Regulators of cell death. Trends Genet. 11:101–105.

    Google Scholar 

  • Lacomme, C., and Santa Cruz, S. 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA 96: 7956–7961.

    Google Scholar 

  • Lam, E., Pontier, D., and del Pozo, O. 1999. Die and let live: programmed cell death in plants. Curr. Opin. Plant Biol. 2: 502–507.

    Google Scholar 

  • Lazebnik, Y.A., Kaufman, S.H., Desnoyers, S., Poirier, G.G. and Earnshaw, W.C. 1993. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346–347.

    Google Scholar 

  • Maedo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S.J., Wolf, D.H. and Frohlich, K.-U. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145: 757–767.

    Google Scholar 

  • Marzo, I., Brenner, C., Zamzami, N., Jurgensmeier, J.M., Susin, S.A., Vieira, H.L.A., Prevost, M.-C., Xie, Z., Matsuyama, S., Reed, J.C., and Koremer, G. 1998. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027–2031.

    Google Scholar 

  • Matsuyama, S., Xu, Q., Velours, J. and Reed, J.C. 1998. The mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell 1: 327–336.

    Google Scholar 

  • Maxwell, D.P., Wang, Y. and McIntosh, L. 1999. The alternative oxidase lowers mitochondria reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA 96: 8271–8276.

    Google Scholar 

  • Mitsuhara, I., Malik, K.A., Miura, M. and Ohashi, Y. 1999. Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr. Biol. 9: 775–778.

    Google Scholar 

  • Mittler, R. and Lam, E. 1996. Sacrifice in the face of foes: pathogeninduced programmed cell death in plants. Trends Microbiol. 4: 10–15.

    Google Scholar 

  • Mittler, R., Shulaev, V., Seskar, M. and Lam, E. 1996. Inhibition of programmed cell death in tobacco plants during a pathogeninduced hypersensitive response at low oxygen pressure. Plant Cell 8: 1991–2001.

    Google Scholar 

  • Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A. and Yuan, J. 2000. Caspase-12 mediates endoplasmic-reticulumspecific apoptosis and cytotoxicity by amyloid-β. Nature 403: 98–103.

    Google Scholar 

  • Navarre, D.A. and Wolpert, T.J. 1999. Victorin induction of an apoptotic/senescence-like response in oats. Plant Cell 11: 237–249.

    Google Scholar 

  • Nicholson, D.W. and Thornberry, N.A. 1997. Caspases: killer proteases. Trends Biochem. Sci. 22: 299–306.

    Google Scholar 

  • Nouraini, S., Six, E., Matsuyama, S., Krajewski, S. and Reed, J.C. 2000. The putative pore-forming domain of Bax regulates mitochondrial localization and interaction with Bcl-XL. Mol. Cell. Biol. 20: 1604–1615.

    Google Scholar 

  • Okuno, S.-I., Shimizuk, S., Ito, T., Nomura, M., Hamada, E., Tsujimoto, Y. and Matsuda, H. 1998. bcl-2 prevents caspaseindependent cell death. J. Biol. Chem. 273: 34272–34277.

    Google Scholar 

  • Pontier, D., Godiard, L., Marco, Y. and Roby, D. 1994. hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant pathogen interactions. Plant J. 5: 507–521.

    Google Scholar 

  • Shaham, S. 1998. Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. J. Biol. Chem. 273: 35109–35117.

    Google Scholar 

  • Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.-G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., Green, D.R. and Martin, S.J. 1999. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J. Cell Biol. 144: 281–292.

    Google Scholar 

  • Spector, M.S., Desnoyers, S., Hoeppner, D.J. and Hengartner, M.O. 1997. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385: 653–656.

    Google Scholar 

  • Stein, J.C. and Hansen, G. 1999. Mannose induces an endonuclease responsible for DNA laddering in plants cells. Plant Physiol. 121: 71–79.

    Google Scholar 

  • Sun, Y.L., Zhao, Y., Hong, X. and Zhai, Z.H. 1999. Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Lett. 462: 317–321.

    Google Scholar 

  • Susin, S., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R., Siderovski, D.P., Penninger, J.M. and Groemer, G. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–445.

    Google Scholar 

  • Talanian, R.V., Quinlan, C., Trautz, S., Hackett, M.C., Mankovich, J.A., Banach, D., Ghayur, T., Brady, K.D. and Wong, W.W. 1997. Substrate specificities of caspase family proteases. J. Biol. Chem. 272: 9677–9682.

    Google Scholar 

  • Thornberry, N.A. and Lazebnik, Y. 1998. Caspases: enemies within. Science 281: 1312–1316.

    Google Scholar 

  • Tsujimoto, Y. and Shimizu, S. 2000. Bcl-2 family: life-or-death switch. FEBS Lett. 466: 6–10.

    Google Scholar 

  • Vander Heiden, M.G., Chandel, N.S., Schumacker, P.T. and Thompson, C.B. 1999. Bcl-XL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3: 159–167.

    Google Scholar 

  • Vanlerberghe, G.C., Day, D.A., Wiskich, J.T., Vanlerberghe, A.E., and McIntosh, L. 1995. Alternative oxidase activity in tobacco leaf mitochondria. Plant Physiol. 109: 353–361.

    Google Scholar 

  • Vaux, D.L. and Korsmeyer, S.J. 1999. Cell death in development. Cell 96: 245–254.

    Google Scholar 

  • Vierstra, R.D. 1996. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 32: 275–302.

    Google Scholar 

  • Villa, P., Kaufmann, S.H., and Earnshaw, W.C. 1997. Caspases and caspase inhibitors. Trends Biochem. Sci. 22: 388–393.

    Google Scholar 

  • Wang, S.L., Hawkins, C., Yoo, S.J., Muller, H.J. and Hay, B.A. 1999. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98: 453–463.

    Google Scholar 

  • White, E. 1996. Life, death, and the pursuit of apoptosis. Genes Dev. 10: 1–15.

    Google Scholar 

  • Wolf, B.B. and Green, D.R. 1999. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274: 20049–20052.

    Google Scholar 

  • Xiang, J., Chao, D.T. and Korsmeyer, S.J. 1996. Bax-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA 93: 14559–14563.

    Google Scholar 

  • Xu, Q. and Reed, J.C. 1998. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell 1: 337–346.

    Google Scholar 

  • Xue, D. and Horvitz, R.H. 1995. Inhibition of the Caenorhabditis elegans cell death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377: 248–251.

    Google Scholar 

  • Yuan, J.Y. and Horvitz, R.H. 1992. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116: 309–320.

    Google Scholar 

  • Yuan, J.Y., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, R.H. 1993. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75: 641–652.

    Google Scholar 

  • Zha, H., Fisk, H.A., Yaffe, M.P., Mahajan, N., Herman, B. and Reed, J.C. 1996. Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell. Biol. 16: 6494–6508.

    Google Scholar 

  • Zhao, Y., Jiang, Z.F., Sun, Y. and Zhai, Z.-H. 1999a. Apoptosis of mouse liver nuclei induced in the cytosol of carrot cells. FEBS Lett. 448: 197–200.

    Google Scholar 

  • Zhao, Y., Sun, Y., Jiang, Z. and Zhai, Z. 1999b. Apoptosis of carrot nuclei in in vivo system induced by cytochrome c. Chin. Sci. Bull. 44: 1497–1501.

    Google Scholar 

  • Zhou, Q., Krebs, J.F., Snipas, S.J., Price, A., Alnemri, E.S., Tomaselli, K.J. and Salvesen, G.S. 1998. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics and characterization of the caspase/p35 complex. Biochemistry 37: 10757–10765.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, E., Pozo, O.d. Caspase-like protease involvement in the control of plant cell death. Plant Mol Biol 44, 417–428 (2000). https://doi.org/10.1023/A:1026509012695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026509012695

Navigation