Skip to main content
Log in

Experimental determination and modelling of the soil water extraction capacities of crops of maize, sunflower, soya bean, sorghum and wheat

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The estimation of soil water reserves is essential for irrigation management. The usual way of calculating these reserves, held between the soil moisture content at field capacity and the classical limit of −1.5 MPa considered as the lower limit of available water, over the rooting depth of the crop, does not correspond with the real behaviour of crops as regards their ability to extract soil water and should be only considered as the apparent available water (AAW). Measurements of moisture profiles made using a neutron probe soil moisture meter from 1970 until 1991 on unirrigated crops at the INRA Agronomy Station at Toulouse-Auzeville, France, on a deep silty clay soil with a high water holding capacity have enabled us to define the water extraction capacities of maize ( Zea mays L.), sunflower (Helianthus annuus L.), sorghum (Sorghum bicolor L. Moench), soya bean (Glycine max L. Merr.), and winter wheat (Triticum aestivum L.). The results show, not only that all the crops can extract soil water from beyond −1.5 MPa in the surface layers to varying degrees and depths, depending on the crop, but also that deeper down, AAW is not fully used, as the moisture profile gradually returns to field capacity. Of the five crops studied, maize extracts the most water from the top 0.5 m, removing 150% of AAW. This amount falls rapidly lower down, reaching nil at 1.6 m. Conversely sunflower extracts less near the surface, but uses all AAW up to 1.2 m, and still extracts 85% of AAW at 1.6 m. Sorghum is somewhat comparable to sunflower, but with a lower use over the entire profile. Soya bean exhibits strong extraction to 1.0 m, and then much less at depth. As to wheat, its extraction capability is quite high near the surface, and then falls steadily with depth where it is still 30% of AAW at 1.6 m. Soil moisture measurements realised on a bare soil during several successive years were used to fix the maximum soil evaporation and to suggest the contribution of crops in soil water depletion from uppermost layers.

The water extraction capacities have been modelled and introduced into the model EPICphase, a modified version of the model EPIC, adapted for irrigation management. Four parameters have been introduced to simulate: (1) the rooting pattern of the crop (parameter α), (2) the degree of involvement of deep layers (parameter p), (3) the fraction of AAW beyond which crop transpiration is affected (parameter t) and (4) the intensity of extraction beyond the limit of −1.5 MPa as a function of soil depth (parameter d). Calibrated on the basis of the driest year since 1970 for each crop, the model was then validated under unirrigated conditions, and then tested on irrigated maize plots. Under unirrigated conditions, the simulations correctly reproduced the water extraction by the five crops, both in an extremely dry year and in a wet year. The observed differences between simulations and observations were found mostly at about 0.1 m depth, and were due to lack of precision of moisture measurements with the neutron probe. From 0.2 to 0.6 m the simulations have a tendency to overestimate the extraction. These differences are explained by water fluxes which are especially high in these layers because of the processes of evaporation from the soil and plant transpiration, which are difficult to simulate with precision. Below 0.6 m, a more stable zone where water movements are of minor importance, the simulations are very precise. For irrigated maize, the results show a very good fit between simulation and measurement, indicating that these water extraction capacity figures could be used for irrigation management provided that the rules for exploitation of the water reserves are well established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berengena J and Henderson D W 1980 Extraccion del agua por las raices de un cultivo de girasol en secano. IX Conferencia Internacional sobre el girasol, Cordoba, Espagna. pp 70–80.

  • Bremner P M, Preston G K and Fazekas de St. Groth C 1986 A field comparison of sunflower (Helianthus annuus) and sorghum (Sorghum bicolor) in a long drying cycle. I. Water extraction. Aust. J. Agric. Res 37, 483–93.

    Google Scholar 

  • Cabelguenne M and Debaeke P 1995 Manuel d'utilisation du modèle EWQTPR (EPIC-PHASE temps réel). INRA-Agronomie, Toulouse. 65 p.

    Google Scholar 

  • Cabelguenne M and Debaeke P 1996 EPIC-PHASE temps réel: un modèle pour la conduite tactique de l'irrigation. C.R. Acad. Agric. Fr 82, 39–51.

    Google Scholar 

  • Cabelguenne M and Deumier J M, 1996 EPIC-PHASE: un modèle pour l'exploration de stratégies d'irrigation. C.R. Acad. Agric. Fr 82, 52–64.

    Google Scholar 

  • Cabelguenne M, Marty J R and Hilaire A 1982 Comparaison technico-économique de la valorisation de l'irrigation par 4 cultures d'été (maïs, soja, sorgho, tournesol). Agronomie 2, 567–576.

    Google Scholar 

  • Cabelguenne M, Jones C A, Marty J R, Dyke P T and Williams J R 1990 Calibration and validation of EPIC for crop rotations in southern France. Agric. Syst. 33, 153–171.

    Google Scholar 

  • Cabelguenne M, Debaeke P, Puech J and Bosc N 1997 Real time irrigation management using the EPIC-Phase model and weather forecasts. Agric. Water Manage. 32, 227–238.

    Google Scholar 

  • Campbell G S 1988 Soil water potential measurement: an overview. Irrig. Sci. 9, 265–273.

    Google Scholar 

  • Cassel D K, Ratliff L F and Ritchie J T 1983 Models for estimating in situ potential extractable water using soil physical and chemical properties. Soil. Sci. Soc. Am. J. 47, 764–769.

    Google Scholar 

  • Copeland P J, Allmaras R R, Crookston R K and Nelson W W 1993 Corn-soybean rotation effects on soil water depletion. Agron. J. 85, 203–210.

    Google Scholar 

  • Cox W J and Jolliff G D 1986 Growth and yield of sunflower and soybean under soil water deficits. Agron. J. 78, 226–230.

    Google Scholar 

  • Dardanelli J L, Bachmeier O A, Sereno R and Gil R 1997 Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crops Res. (In press).

  • Debaeke P and Hilaire A 1997 Production of rainfed and irrigated crops under different crop rotations and input levels in southwestern France. Can. J. Plant Sci. (In press).

  • Debaeke P, Cabelguenne M, Casals M L and Puech J 1996 Elaboration du rendement du blé d'hiver en conditions de déficit hydrique. II. Mise au point et test d'un modèle de simulation de la culture de blé d'hiver en conditions d'alimentation hydrique et azotée variées: Epicphase-Blé. Agronomie 16, 25–46.

    Google Scholar 

  • Entz M H, Gross K G and Fowler D B 1992 Root growth and soil-water extraction by winter and spring wheat. Can. J. Plant Sci. 72, 1109–1120.

    Google Scholar 

  • Feddes R A 1987 Modelling and simulation in hydrologic system related to agricultural development: state of the art. In Simulation Models for Cropping Systems in Relation to Water Management. Report of the Commission of the European Communities, pp 55–72.

  • Feddes R A, Kowalik P J and Zaradny H 1978 Simulation of field water use and crop yield. Simulation Monograph, PUDOC, Wageningen, The Netherlands. 189 pp.

    Google Scholar 

  • Gardner W R 1966 Soil water movement and root absorption. In Plant Environment and Efficient Water Use. Eds. W.H. Pierre et al. pp 127–149. ASA, Madison, WI.

    Google Scholar 

  • Hattendorf M J, Redelfs M S, Amos B, Stone L R and Gwin R E Jr 1988 Comparative water use characteristics of six row crops. Agron. J. 80, 80–85.

    Google Scholar 

  • Katerji N, Daudet F and Valancogne C 1984 Contribution des réserves profondes du sol au bilan hydrique des cultures. Détermination et importance. Agronomie 4, 779–787.

    Google Scholar 

  • Kiniry J R, Blanchet R, Williams J R, Texier V, Jones C A and Cabelguenne M 1992 Sunflower simulation using the EPIC and ALMANAC models. Field Crops Res. 30, 402–423.

    Google Scholar 

  • Legros P, Leennhardt D, Voltz M and Cabelguenne M 1996 Scientific basis of EuroACCESS-II. In EuroACCESS, Agro Climatic Change and European Soil Suitability. Commission of the European Communities. Directorate-General XII. Science, Research and Development. pp 19–34.

  • Lindstrom M J, Warnes D D and Evans S D 1982 A water use comparison between corn and sunflowers. J. Soil Water Conserv. 37, 362–364.

    Google Scholar 

  • MacDonald G K and Fischer R A 1989 Soil management to maintain crop production in semi-arid environments. In Improvement and Management of Winter Cereals under Temperature, Drought and Salinity Stresses. Proceedings of the ICARDA-INIA Symposium, Cordoba, Spain. pp 421–440.

  • Maertens C 1988 Intérêt de l'endoscopie pour l'étude de l'influence de l'enracinement d'un couvert végétal sur l'utilisation de l'eau du sol. In Etudes sur les transferts d'eau dans le système solplante-atmosphère. Comptes-rendus des travaux effectués dans le cadre de l'Action Thématique Programmée «Eau». INRA Editions, Paris. pp 213–224.

  • Maertens C and Cabelguenne M 1971 Influence de l'irrigation sur les modalités d'utilisation de l'eau du sol par différentes cultures annuelles et pluriannuelles. C.R. Acad. Agric. Fr. 57, 926–936.

    Google Scholar 

  • Maertens C and Cabelguenne m 1974 Intensité et limite de dessèchement du sol en relation avec l'enracinement de quelques espèces végétales cultivées. C.R. Acad. Sc. Paris 279, 2039–2042.

    Google Scholar 

  • Maertens C, Morizet J and Studer R 1965 Modalités d'utilisation en agronomie d'un humidimètre à ralentissement de neutrons. Ann. Agron. 16, 5–23.

    Google Scholar 

  • Marty J R, Hutter W and Rellier J P 1981 Projet de programme de recherches expérimentales sur l'optimisation des intrants dans des rotations avec céréales et oléoprotéagineux avec ou sans irrigation. In Optimisation des intrants dans un système de culture. Commission des communautés européennes. Séminaire de Toulouse (France), 15–16 Janvier 1981. pp 119–148.

  • Marty J R, Hilaire A and Cabelguenne M 1982 Quelques aspects du rôle des oléoprotéagineux dans les rotations culturales. C.R. Acad. Agric. Fr. 68, 1251–1261.

    Google Scholar 

  • Nielsen D R, Van Genuchten M T and Biggar J W 1986 Water flow and solute transport processes in the unsaturated zone. Water Resour. Res. 22, 89–108.

    Google Scholar 

  • Puech J 1972 Etude expérimentale de la disponibilité de l'eau pour les végétaux sur différents types de sols. Thèse de Docteur-Ingénieur, Université Paul Sabatier, Toulouse. 161 p.

    Google Scholar 

  • Puech J, Marty J R and Hernandez M 1978 Bilans hydriques pluriannuels sous diverses rotations culturales irriguées ou non. Société hydrotechnique de France. XVéme journées de l'hydraulique, Toulouse 5–7 Septembre 1978. pp 1–6.

  • Ratliff L F, Ritchie J T and Cassel D K 1983 Field-measured limits of soil water availability as related to laboratory-measured properties. Soil. Sci. Soc. Am. J. 47, 770–775.

    Google Scholar 

  • Rawls W J and Brakensiek D L 1982 Estimating soil water retention from soil properties. ASCE. Irrig. Draing. 108, 166–171.

    Google Scholar 

  • Rawls W J and Brakensiek D L 1985 Prediction of soil water properties for hydrologics modeling. In Watershed Management in the Eighties. Eds. E.B. Jones and T.J. Ward Proc. of Symp. sponsored by Common Watershed Management, I & D Division, ASCE Convention, Denver, CO, 30 April–1 May 1985. pp 293–299.

  • Richards L A and Weaver L R 1943 Fifteen atmosphere percentages as related to the permanent wilting percentage. Soil Sci. 56, 331–339.

    Google Scholar 

  • Ritchie J T 1972 A model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 8, 1204–1213.

    Google Scholar 

  • Ritchie J T 1981 Soil water availability. Plant Soil 58, 327–338.

    Google Scholar 

  • Savage M J, Ritchie J T, Bland W L and Dugas W A 1996 Lower limit of soil water availability. Agron. J. 88, 644–651.

    Google Scholar 

  • Slatyer R O 1957 The significance of the permanent wilting percentage in studies of plant and soil water relations. Bot. Rev. 23, 586–636.

    Google Scholar 

  • Stockle C O, Martin S A and Campbell G S 1994 CROPSYST, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agric. Syst. 46, 335–359.

    Google Scholar 

  • Tardieu F 1984 Etude au champ de l'enracinement du maïs. Influence de l'état structural sur la répartition des racines, conséquences sur l'alimentation hydrique. Thèse Docteur Ingénieur, INA Paris-Grignon. 232 p.

  • Thiébaut P 1995 Simulation des cultures de maïs et de blé avec le modèle cultural EPIC-Phase. Mémoire de fin d'études, Ecole Supérieure d'Agriculture de Purpan. 88 p.

  • Williams J R, Jones C A, Kiniry J R and Spanel D A 1989 The EPIC crop growth model. Trans. ASAE 32, 497–511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabelguenne, M., Debaeke, P. Experimental determination and modelling of the soil water extraction capacities of crops of maize, sunflower, soya bean, sorghum and wheat. Plant and Soil 202, 175–192 (1998). https://doi.org/10.1023/A:1004376728978

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004376728978

Navigation