Skip to main content
Log in

The Solar Dynamo and Emerging Flux – (Invited Review)

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The largest concentrations of magnetic flux on the Sun occur in active regions. In this paper, the properties of active regions are investigated in terms of the dynamics of magnetic flux tubes which emerge from the base of the solar convection zone, where the solar cycle dynamo is believed to operate, to the photosphere. Flux tube dynamics are computed using the `thin flux tube' approximation, and by using MHD simulation. Simulations of active region emergence and evolution, when compared with the known observed properties of active regions, have yielded the following results: (1) The magnetic field at the base of the convection zone is confined to an approximately toroidal geometry with a field strength in the range (3–10)×104 G. The latitude distribution of the toroidal field at the base of the convection zone is more or less mirrored by the observed active latitudes; there is not a large poleward drift of active regions as they emerge. The time scale for emergence of an active region from the base of the convection zone to the surface is typically 2–4 months. The equatorial gap in the distribution of active regions has two possible origins; if the toroidal field strength is close to 105 G, it is due to the lack of equilibrium solutions at low latitude; if it is closer to 3×104 G, it may be due to modest poleward drift during emergence. (2) The tilt of active regions is due primarily to the Coriolis force acting to twist the diverging flows of the rising flux loops. The dispersion in tilts is caused primarily by the buffeting of flux tubes by convective motions as they rise through the interior. (3) The Coriolis force also bends the active region flux tube shape toward the following (i.e., anti-rotational) direction, resulting in a steeper leg on the following side as compared to the leading side of an active region. When the active region emerges through the photosphere, this results in a more rapid separation of the leading spots away from the magnetic neutral line as compared to the following spots. This bending motion also results in the neutral line being closer to the following magnetic polarity. (4) Active regions behave kinematically after they emerge because of `dynamic disconnection', which occurs because of the lack of a solution to the hydrostatic equilibrium equation once the flux loop has emerged. This could explain why active regions decay once they have emerged, and why the advection-diffusion description of active regions works well after emergence. Smaller flux tubes may undergo `flux tube explosion', a similar process, and provide a source for the constant emergence of small-scale magnetic fields. (5) The slight trend of most active regions to have a negative magnetic twist in the northern hemisphere and positive twist in the south can be accounted for by the action of Coriolis forces on convective eddies, which ultimately writhes active region flux tubes to produce a magnetic twist of the correct sign and amplitude to explain the observations. (6) The properties of the strongly sheared, flare productive δ-spot active regions can be accounted for by the dynamics of highly twisted Ω loops that succumb to the helical kink instability as they emerge through the solar interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babcock, H. W.: 1961, Astrophys. J. 133, 572.

    Google Scholar 

  • Batchelor, G. K.: 1967, An Introduction to Fluid Mechanics, Cambridge University Press, Cambridge, p. 341.

    Google Scholar 

  • Caligari, P., Moreno-Insertis, F., and Schüssler, M.: 1995, Astrophys. J. 441, 886.

    Google Scholar 

  • Caligari, P., Schüssler, M., and Moreno-Insertis F.: 1998, Astrophys. J. 502, 481.

    Google Scholar 

  • Canfield, R. C., Hudson, H. S., and McKenzie, D. E.: 1999, Geophys. Res. Letters 26(6), 627.

    Google Scholar 

  • Cauzzi, G., Canfield, R. C., and Fisher, G. H.: 1996, Astrophys. J. 456, 850.

    Google Scholar 

  • Cauzzi, G., Moreno-Insertis, F., and van Driel-Gesztelyi, L.: 1996, Astron. Soc. Pacific Conf. Ser. 109, 121.

    Google Scholar 

  • Chou, D.-Y. and Wang, H.: 1987, Solar Phys. 110, 81.

    Google Scholar 

  • Choudhuri, A. R.: 1989, Solar Phys. 123, 217.

    Google Scholar 

  • Choudhuri, A. R. and Gilman P. A.: 1987, Astrophys. J. 316, 788.

    Google Scholar 

  • Choudhuri, A. R., Schüssler, M., and Dikpati M.: 1995, Astron. Astrophys. 303, L29.

    Google Scholar 

  • Corbard, T., Blanc-Feraud, L., Berthomieu, G., and Provost, J.: 1999, Astron. Astrophys. 344, 696.

    Google Scholar 

  • DeLuca, E. E. and Gilman P. A.: 1991, 'The Solar Dynamo', in Solar Interior and Atmosphere, University of Arizona Press, Tucson, pp. 275–303.

    Google Scholar 

  • DeVore, C. R. and Sheeley, N. R.: 1987, Solar Phys. 108, 47.

    Google Scholar 

  • Dikpati, M. and Charbonneau P.: 1999, Astrophys. J. 518, 508.

    Google Scholar 

  • D'Silva, S. and Choudhuri, A. R.: 1993, Astron. Astrophys. 272, 621.

    Google Scholar 

  • D'silva, S. and Howard, R. F.: 1993, Solar Phys. 148, 1.

    Google Scholar 

  • Durney, B. R.: 1997, Astrophys. J. 486, 1065.

    Google Scholar 

  • Emonet, T. and Moreno-Insertis, F.: 1998, Astrophys. J. 492, 804.

    Google Scholar 

  • Fan, Y. and Fisher, G. H.: 1996, Solar Phys. 166, 17.

    Google Scholar 

  • Fan, Y. and Gong, D.: 1999, Solar Phys., 192, 141 (this issue).

    Google Scholar 

  • Fan, Y., Fisher, G. H., and DeLuca, E. E.: 1993, Astrophys. J. 405, 852.

    Google Scholar 

  • Fan, Y., Fisher, G. H., and McClymont A. N.: 1994, Astrophys. J. 436, 907.

    Google Scholar 

  • Fan, Y., Zweibel, E. G., and Lantz, S. R.: 1998, Astrophys. J. 493, 480.

    Google Scholar 

  • Fan, Y., Zweibel, E. G., Linton, M. G., and Fisher, G. H.: 1998, Astrophys. J. 505, L59.

    Google Scholar 

  • Fan, Y., Zweibel, E. G., Linton, M. G., and Fisher, G. H.: 1999, Astrophys. J. 521, 460.

    Google Scholar 

  • Fisher, G. H., Fan, Y., and Howard R. F.: 1995, Astrophys. J. 438, 463.

    Google Scholar 

  • Ferriz-Mas, A. and Schüssler M.: 1993, Geophys. Astrophys. Fluid Dyn. 72, 209.

    Google Scholar 

  • Ferriz-Mas, A. and Schüssler M.: 1995, Geophys. Astrophys. Fluid Dyn. 81, 233.

    Google Scholar 

  • Howard, R. F.: 1992, Solar Phys. 142, 233.

    Google Scholar 

  • Howard, R. F., Gilman, P. A., and Gilman, P. I.: 1984, Astrophys. J. 283, 373.

    Google Scholar 

  • Hughes, D. W. and Falle S. A. E. G.: 1998, Astrophys. J. 509L, 57.

    Google Scholar 

  • Kosovichev, A. G.: 1996, Astrophys. J. 469, L61.

    Google Scholar 

  • Kurokawa, H.: 1991, in Y. Uchida, R. C. Canfield, T. Watanabe, and E. Hiei (eds.), 'Flare Physics in Solar Activity Maximum 22', Lecture Notes in Physics 387, 39.

  • Leighton, R. B.: 1969, Astrophys. J. 156, 1.

    Google Scholar 

  • Leka, K. D., Canfield, R. C., McClymont, A. N., and van Driel-Gesztelyi, L.: 1996, Astrophys. J. 462, 547.

    Google Scholar 

  • Linton, M. G., Longcope, D. W., and Fisher, G. H.: 1996, Astrophys. J. 469, 954.

    Google Scholar 

  • Linton, M. G., Dahlburg, R. B., Fisher, G. H., and Longcope D. W.: 1998, Astrophys. J. 507, 417.

    Google Scholar 

  • Linton, M. G., Fisher, G. H., Dahlburg, R. B., and Fan, Y.: 1999, Astrophys. J. 522, 1190.

    Google Scholar 

  • Longcope, D. W. and Fisher, G. H.: 1996, Astrophys. J. 458, 380.

    Google Scholar 

  • Longcope, D. W. and Klapper, I.: 1997, Astrophys. J. 488, 443.

    Google Scholar 

  • Longcope, D. W., Fisher, G. H., and Arendt, S.: 1996, Astrophys. J. 464, 999.

    Google Scholar 

  • Longcope, D. W., Fisher, G. H., and Pevtsov, A. A.: 1998, Astrophys. J. 507, 417.

    Google Scholar 

  • MacGregor K. B. and Charbonneau P.: 1997a, Astrophys. J. 486, 484.

    Google Scholar 

  • MacGregor K. B. and Charbonneau P.: 1997b, Astrophys. J. 486, 502.

    Google Scholar 

  • Markiel, J. A. and Thomas J. H.: 1999, Astrophys. J. 523, 827.

    Google Scholar 

  • Mickey, D. L.: 1985, Sol. Phys. 97, 223.

    Google Scholar 

  • Moffatt, H. K. and Ricca, R L.: 1992, Proc. R. Soc. London A439, 411.

    Google Scholar 

  • Moreno-Insertis, F. and Emonet, T.: 1996, Astrophys. J. 472, L53.

    Google Scholar 

  • Moreno-Insertis, F., Schüssler, M., and Ferriz-Mas, A: 1992, Astron. Astrophys. 264, 686.

    Google Scholar 

  • Moreno-Insertis, F., Schüssler, M., and Caligari, P.: 1994, Solar Phys. 153, 449.

    Google Scholar 

  • Moreno-Insertis, F., Caligari, P., and Schüssler, M.: 1995, Astrophys. J. 452, 894.

    Google Scholar 

  • Parker, E. N.: 1979, Cosmical Magnetic Fields, Oxford University Press, Oxford, p. 147.

    Google Scholar 

  • Parker, E. N.: 1993, Astrophys. J. 408, 707.

    Google Scholar 

  • Pevtsov, A. A., Canfield, R. C., and Metcalf, T. R.: 1995, Astrophys. J. 440, L109.

    Google Scholar 

  • Schüssler, M.: 1979, Astron. Astrophys. 71, 79.

    Google Scholar 

  • Schüssler, M., Caligari, P., Ferriz-Mas, A., and Moreno-Insertis, F.: 1994, Astron. Astrophys. 281, L69.

    Google Scholar 

  • Sheeley, N. R., Nash, A. G., and Wang, Y.-M.: 1987, Astrophys. J. 319, 481.

    Google Scholar 

  • Spruit, H. C.: 1979, Solar Phys. 61, 363.

    Google Scholar 

  • Spruit, H. C: 1981, Astron. Astrophys. 98, 155.

    Google Scholar 

  • Tanaka, K.: 1991, Solar Phys. 136, 133.

    Google Scholar 

  • Title, A. M. and Schrijver C. J.: 1998, Astron. Soc. Pacific Conf. Ser. 154, 345.

    Google Scholar 

  • van Ballegooijen, A. A.: 1982, Astron. Astrophys. 113, 99.

    Google Scholar 

  • van Ballegooijen, A A. and Choudhuri, A.R.: 1988, Astrophys. J. 333, 965.

    Google Scholar 

  • van Driel-Gesztelyi, L. and Petrovay, K.: 1990, Solar Phys. 126, 285.

    Google Scholar 

  • Vainshtein S. I. and Cattaneo F.: 1992, Astrophys. J. 393, 165.

    Google Scholar 

  • Wang, Y.-M., Nash, A. G., and Sheeley, N. R.: 1989, Astrophys. J. 347, 529.

    Google Scholar 

  • Wang, Y.-M., Sheeley, N. R., and Nash, A. G.: 1991, Astrophys. J. 383, 431.

    Google Scholar 

  • Zhang, H. and Bao, S.: 1999, Astrophys. J. 519, 876.

    Google Scholar 

  • Zirin, H.: 1988, Astrophysics of the Sun, Cambridge University Press, Cambridge, p. 307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, G., Fan, Y., Longcope, D. et al. The Solar Dynamo and Emerging Flux – (Invited Review). Solar Physics 192, 119–139 (2000). https://doi.org/10.1023/A:1005286516009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005286516009

Keywords

Navigation