Skip to main content
Log in

Asteroid surface materials: Mineralogical characterizations from reflectance spectra

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The interpretation of diagnostic parameters in the spectral reflectance data for asteroids provides a means of characterizing the mineralogy and petrology of asteroid surface materials. An interpretive technique based on a quantitative understanding of the functional relationship between the optical properties of a mineral assemblage and its mineralogy, petrology and chemistry can provide a considerably more sophisticated characterization of a surface material than any matching or classification technique for those objects bright enough to allow spectral reflectance measurements. Albedos derived from radiometry and polarization data for individual asteroids can be used with spectral data to establish the spectral albedo, to define the optical density of the surface material and, in general, to constrain mineralogical interpretations.

Mineral assemblages analogous to most meteorite types, with the exception of ordinary chondritic assemblages, have been found as surface materials of Main Belt asteroids. C1- and C2-like assemblages (unleached, oxidized meteoritic clay minerals plus opaques such as carbon) dominate the population (∼80%) throughout the Belt, especially in the outer Belt. A smaller population of asteroids exhibit surface materials similar to C3 (CO, CV) meteoritic assemblages (olivine plus opaque, probably carbon) and are also distributed throughout the Belt. The relative size (diameter) distributions for these two populations of objects are consistent with an origin by sequential accretion from a cooling nebula (‘C2’ as surface layers, ‘C3’ as interior layers or cores). Based on information from meteoritic analogues and on qualitative models for the behavior of these materials during a heating episode, it seems unlikely that these ‘C2’- and ‘C3’-like asteroidal bodies have experienced any significant post-accretionary heating event either near surface or in the deep interior.

The majority of remaining studied asteroids (20) of 65 asteroids exhibit spectral reflectance curves dominated by the presence of metallic nickel-iron in their surface materials. These objects are most probably the several end products of an intense thermal event leading to the melting and differentiating of their protobodies. These thermalized bodies are concentrated toward the inner part of the Asteroid Belt but exist throughout the Belt.

The size of the proto-asteroid has apparently exercised control over the post-accretionary thermal history of these bodies. The available evidence indicates that all asteroids larger than about 450 km in (present) diameter have undergone a significant heating episode since their formation. The post-accretionary thermal history of the asteroidal parent bodies was apparently affected by both distance from the Sun and body size.

The C2-like materials which dominate the main asteroid belt population appear to be relatively rare on earth-approaching asteroids. This suggests that most of these Apollo-Amor objects are not randomly derived from the main belt, but (a) may derive from a single event in recent time (∼107 yr), (b) may derive from a favorably situated source body, (c) may derive from a particular, compositionally anomalous region of the belt, or (d) may derive from an alternate source (e.g. comets).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. B.: 1974, J. Geophys. Res. 79, 4829.

    Google Scholar 

  • Adams, J. B.: 1975, in C. Karr (ed.), Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, Academic Press, New York, p. 91.

    Google Scholar 

  • Adams, J. B. and Filice, A. L.: 1967, J. Geophys. Res. 72, 5705.

    Google Scholar 

  • Adams, J. B. and McCord, T. B.: 1970, Proc. 1st Lunar Sci. Conf. p. 1937.

  • Allen, D. A.: 1970, Nature 227, 158.

    Google Scholar 

  • Allen, D. A.: 1971, in T. Gehrels (ed.), Physical Studies of Minor Planets, NASA SP-267, p. 41.

  • Anders, E.: 1964, Space Sci. Rev. 3, 583.

    Google Scholar 

  • Anders, E.: 1971, in T. Gehrels (ed.), Physical Studies of Minor Planets, NASA SP-267, p. 429.

  • Anders, E.: 1975, Icarus 24, 363.

    Google Scholar 

  • Arnold, J. R.: 1965, Astrophys. J. 141, 1548.

    Google Scholar 

  • Bell, P. M. and Mao, H. K.: 1973, Geochim. Cosmochim. Acta 37, 755.

    Google Scholar 

  • Bell, P. M., Mao, H. D., and Rossman, G. R.: 1975, in C. Karr (ed.), Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, p. 1, Academic Press, New York.

    Google Scholar 

  • Binns, R. A.: 1970, Min. Mag. 37, 649.

    Google Scholar 

  • Bowell, E. and Zellner, B.: 1973, in T. Gehrels (ed.), Planets, Stars and Nebulae Studied with Photopolarimetry, Univ. of Arizona Press, Tucson, Arizona, p. 381.

    Google Scholar 

  • Briggs, P. L.: 1976, M.S. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 63 pp.

  • Burns, R. G.: 1970a, Am. Mineral. 55, 1608.

    Google Scholar 

  • Burns, R. G.: 1970b, Mineralogical Applications of Crystal Field Theory, Cambridge University Press, New York.

    Google Scholar 

  • Burns, R. G. and Huggins, F. E.: 1973, Am. Mineral. 58, 955.

    Google Scholar 

  • Cameron, A. G. W.: 1973, Icarus 18, 407.

    Google Scholar 

  • Cameron, A. G. W. and Pine, M. R.: 1973, Icarus 18, 377.

    Google Scholar 

  • Chapman, C. R.: 1972, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 391 pp.

  • Chapman, C. R.: 1976, Geochim. Cosmochim. Acta 40, 701.

    Google Scholar 

  • Chapman, C. R.: 1977, in A. H. Delsemme (ed.), The Interrelated Origin of Comets, Asteroids and Meteorites, University of Toledo Publications, p. 265.

  • Chapman, C. R., McCord, T. B., and Johnson, T. V.: 1973a, Astron. J. 78, 126.

    Google Scholar 

  • Chapman, C. R., McCord, T. B., and Pieters, C.: 1973b, Astron. J. 78, 502.

    Google Scholar 

  • Chapman, C. R. and Salisbury, J. W.: 1973, Icarus 19, 507.

    Google Scholar 

  • Chapman, C. R., Morrison, D., and Zellner, B.: 1975, Icarus 25, 104.

    Google Scholar 

  • Chapman, C. R. and Morrison, D.: 1976, Icarus 28, 91.

    Google Scholar 

  • Cruikshank, D. P.: 1977, Icarus 30, 224.

    Google Scholar 

  • Cruikshank, D. P. and Morrison, D.: 1973, Icarus 20, 477.

    Google Scholar 

  • Cruikshank, D. P. and Jones, T. J.: 1977, Icarus 31, 427.

    Google Scholar 

  • Deer, W. A., Howie, R. A., and Zussman, J.: 1963, Rock Forming Minerals: Vol. 3 Sheet Silicates, Longmans, Green and Co., London.

    Google Scholar 

  • Dodd, R. T.: 1976, Earth Planetary Sci. Letters 30, 281.

    Google Scholar 

  • Dohnanyi, J. S.: 1969, J. Geophys. Res. 74, 2531.

    Google Scholar 

  • Dollfus, A.: 1971, in T. Gehrels (ed.), Physical Studies of Minor Planets, NASA SP-267, p. 95.

  • Dollfus, A. and Geake, J. E.: 1975, Proc. 6th Lunar Sci. Conf. 3, 2749.

    Google Scholar 

  • Dowty, E. and Clark, J. R.: 1973a, Am. Mineral. 58, 230.

    Google Scholar 

  • Dowty, E. and Clark, J. R.: 1973b, Am. Mineral. 58, 962.

    Google Scholar 

  • Dunlap, J. L.: 1974, Astron. J. 79, 324.

    Google Scholar 

  • Dunlap, J. L., Gehrels, T., and Howes, M. L.: 1973, Astron. J. 78, 491.

    Google Scholar 

  • Egan, W. G., Veverka, J., Noland, M., and Hilgeman, T.: 1973, Icarus 19, 358.

    Google Scholar 

  • Fredriksson, K. and Keil, K.: 1964, Meteoritics 2, 201.

    Google Scholar 

  • Fuchs, L., Olsen, E., and Jensen, K. J.: 1973, Smithsonian Contrib. Earth Sci. 10, 39 pp.

  • Gaffey, M. J.: 1974, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 355 pp.

  • Gaffey, M. J.: 1976, J. Geophys. Res. 81, 905.

    Google Scholar 

  • Gaffey, M. J. and McCord, T. B.: 1977, in A. H. Delsemme (ed.), The Interrelated Origin of Comets, Asteroids and Meteorites, University of Toledo Publications, p. 199.

  • Gehrels, T., Roemer, E., Taylor, R. C., and Zellner, B. H.: 1970, Astron. J. 75, 186.

    Google Scholar 

  • Gradie, J. and Zellner, B.: 1977, Science 197, 254.

    Google Scholar 

  • Green, H. W., Radcliffe, S. V., and Heuer, A. H.: 1970, EOS Trans. Am. Geophys. Union 51, 341 (abstract).

    Google Scholar 

  • Grossman, L.: 1972, Geochim. Cosmochim. Acta 36, 597.

    Google Scholar 

  • Grossman, L. and Larimer, J. W.: 1974, Rev. Geophys. Space Phys. 12, 71.

    Google Scholar 

  • Hansen, O. L.: 1976, Astron. J. 81, 74.

    Google Scholar 

  • Hansen, O. L.: 1977, Icarus 31, 456.

    Google Scholar 

  • Hapke, B.: 1971, in T. Gehrels (ed.), Physical Studies of Minor Planets, NASA SP-267, p. 67.

  • Herndon, J. M., Rowe, M. W., Larson, E. E., and Watson, D. E.: 1976, Earth Planetary Sci. Letters 29, 283.

    Google Scholar 

  • Huguenin, R.: 1974, J. Geophys. Res. 79, 3895.

    Google Scholar 

  • Hunt, G. R. and Salisbury, J. W.: 1970, Mod. Geol. 1, 283.

    Google Scholar 

  • Johnson, T. V. and Fanale, F. P.: 1973, J. Geophys. Res. 78, 8507.

    Google Scholar 

  • Johnson, T. V., Matson, D. L., Veeder, G. J., and Loer, S. J.: 1975, Astrophys. J. 197, 527.

    Google Scholar 

  • Jones, T. J. and Morrison, D.: 1974, Astron. J. 79, 892.

    Google Scholar 

  • Keil, K.: 1968, J. Geophys. Res. 73, 6945.

    Google Scholar 

  • Keil, K. and Fredriksson, K.: 1964, J. Geophys. Res. 69, 3487.

    Google Scholar 

  • Kerridge, J. F. and MacDougall, J. D.: 1976, Earth Planetary Sci. Letters 29, 341.

    Google Scholar 

  • Kozai, Y.: 1962, Astron. J. 67, 591.

    Google Scholar 

  • Larimer, J. W.: 1967, Geochim. Cosmochim. Acta 31, 1215.

    Google Scholar 

  • Larson, H. P.: 1977, in A. H. Delsemme (ed.), The Interrelated Origin of Comets, Asteroids and Meteorites, University of Toledo Publications, p. 219.

  • Larson, H. P. and Fink, U.: 1975, Icarus 26, 420.

    Google Scholar 

  • Larson, H. P., Fink, U., Treffers, R. R., and Gautier, T. N.: 1976, Icarus 28, 95.

    Google Scholar 

  • Lecar, M. and Franklin, F. A.: 1973, Icarus 20, 442.

    Google Scholar 

  • Lee, T., Papanastassiou, D. A., and Wasserburg, G. J.: 1976, Geophys. Res. Letters 3, 109.

    Google Scholar 

  • Levin, B. J., Simonenko, A. N., and Anders, E.: 1976, Icarus 28, 307.

    Google Scholar 

  • Lewis, J. S.: 1972, Icarus 16, 241.

    Google Scholar 

  • Loughnan, F. C.: 1969, Chemical Weathering of the Silicate Minerals, Am. Elsevier Pub. Co., New York.

    Google Scholar 

  • Lyot, B.: 1934, Compt. Rend. Acad. Sci. 199, 774.

    Google Scholar 

  • Mao, H. K. and Bell. P. M.: 1974a, Carnegie Inst. Wash. Yearbook 74, 448.

    Google Scholar 

  • Mao, H. K. and Bell, P. M.: 1974b, Carnegie Inst. Wash. Yearbook 74, 502.

    Google Scholar 

  • Marcus, A. H.: 1969, Icarus 11, 76.

    Google Scholar 

  • Mason, B.: 1971, Meteoritics 6, 59.

    Google Scholar 

  • Mason, B. and Wiik, H. B.: 1962, Am. Mus. Novitates, No. 2115, 10 pp.

  • Matson, D. L.: 1971, in T. Gehrels (ed.), Physical Studies of Minor Planets NASA SP-267, p. 45.

  • Matson, D. L.: 1972, Ph.D. Thesis, California Institute of Technology, Pasadena, Calif., 235 pp.

  • Matson, D. L., Johnson T. V., and Veeder, G. J.: 1977a, in A. H. Delsemme (ed.), The Interrelated Origin of Comets, Asteroids and Meteorites, University of Toledo Publications, p. 229.

  • Matson, D. L., Johnson, T. V., and Veeder, G. J.: 1977b, Proc. 8th Lunar Sci. Conf., p. 1001.

  • McCord, T. B., Adams, J. B., and Johnson, T. V.: 1970, Science 168, 1445.

    Google Scholar 

  • McCord, T. B. and Chapman, C. R.: 1975a, Astrophys. J. 195, 553.

    Google Scholar 

  • McCord, T. B. and Chapman, C. R.: 1975b, Astrophys. J. 197, 781.

    Google Scholar 

  • McCord, T. B. and Gaffey, M. J.: 1974, Science 186, 352.

    Google Scholar 

  • McFadden, L., McCord, T. B., and Pieters, C.: 1977, Icarus 31, 439.

    Google Scholar 

  • McSween, H. Y. and Richardson, S. M.: 1977, Geochim. Cosmochim. Acta 41, 1145.

    Google Scholar 

  • Moore, C. B. and Lewis, C. F.: 1967, J. Geophys. Res. 72, 6289.

    Google Scholar 

  • Morrison, D.: 1973, Icarus 19, 1.

    Google Scholar 

  • Morrison, D.: 1974, Astrophys. J. 194, 203.

    Google Scholar 

  • Morrison, D.: 1976, Geophys. Res. Letters 3, 701.

    Google Scholar 

  • Morrison, D.: 1977a, Astrophys. J. 214, 667.

    Google Scholar 

  • Morrison, D.: 1977b, Icarus 31, 185.

    Google Scholar 

  • Morrison, D.: 1977c, in A. H. Delsemme (ed.), The Interrelated Origin of Comets, Asteroids and Meteorites, University of Toledo Press, p. 177.

  • Morrison, D. and Chapman, C. R.: 1976, Astrophys. J. 204, 934.

    Google Scholar 

  • Nash, D. B. and Conel, J. F.: 1974, J. Geophys. Res. 79, 1615.

    Google Scholar 

  • Opik, E. J.: 1963, Adv. Astron. Astrophys. 2, 219.

    Google Scholar 

  • Opik, E. J.: 1966, Adv. Astron. Astrophys. 4, 301.

    Google Scholar 

  • Peterson, C.: 1976, Icarus 29, 91.

    Google Scholar 

  • Pieters, C., Gaffey, M. J., Chapman, C. R., and McCord, T. B.: 1976, Icarus 28, 105.

    Google Scholar 

  • Reeves, H. and Audouze, J.: 1969, Earth Planetary Sci. Letters 4, 135.

    Google Scholar 

  • Reid, A. M. and Cohen, A. J.: 1967, Geochim. Cosmochim. Acta 31, 661.

    Google Scholar 

  • Ross, H. P., Adler, J. E. M., and Hunt, G. R.: 1969, Icarus 11, 46.

    Google Scholar 

  • Salisbury, J. W. and Hunt, G. R.: 1974, J. Geophys. Res. 79, 4439.

    Google Scholar 

  • Schaudy, R., Wasson, J. T., and Buchwald, V. F.: 1972, Icarus 17, 174.

    Google Scholar 

  • Schramm, D., Tera, F., and Wasserburg, G.: 1970, Earth Planetary Sci. Letters 10, 44.

    Google Scholar 

  • Sonett, C. P.: 1971, in T. Gehrels (ed.), Physical Studies of Minor Planets, NASA SP-267, p. 239.

  • Sonett, C. P., Colburn, D. S., Schwartz, K., and Keil, K.: 1970, Astrophys. Space Sci. 7, 446.

    Google Scholar 

  • Sytinskaya, N. N.: 1965, Societ Phys. Astron. 9, 100.

    Google Scholar 

  • Turekian, K. K. and Clark, S. P., Jr.: 1969, Earth Planetary Sci. Letters 6, 346.

    Google Scholar 

  • Van Schmus, W. R.: 1969, in P. Millman (ed.), Meteorite Research, p. 480, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Van Schmus, W. R. and Wood, J. A.: 1967, Geochim. Cosmochim. Acta 31, 747.

    Google Scholar 

  • Vdovykin, G. P. and Moore, C. B.: 1971, in B. Mason (ed.), Handbook of Elemental Abundances in Meteorites, Gordon and Breach, New York, p. 81.

    Google Scholar 

  • Veeder, G. J., Johnson, T. V., and Matson, D. L.: 1975, Bull. Am. Astron. Soc. 7, 377 (abstract).

    Google Scholar 

  • Veeder, G. J., Matson, D. L., Bergstralh, J. T., and Johnson, T. V.: 1976, Icarus 28, 79.

    Google Scholar 

  • Veverka, J.: 1970, Ph.D. Thesis, Harvard University, Cambridge, Mass., 288 pp.

  • Veverka, J.: 1971a, Icarus 15, 11.

    Google Scholar 

  • Veverka, J.: 1971b, Icarus 15, 454.

    Google Scholar 

  • Veverka, J.: 1973, Icarus 19, 114.

    Google Scholar 

  • Veverka, J. and Noland, M.: 1973, Icarus 19, 230.

    Google Scholar 

  • Wetherill, G. W.: 1974, in F. A. Donath, (ed.), Ann. Rev. Earth Planetary Sci. Vol. 2, p. 303.

  • Wetherill, G. W.: 1976, Geochim. Cosmochim. Acta 40, 1297.

    Google Scholar 

  • Wetherill, G. W.: 1977, Proc. 8th Lunar Sci. Conf., p. 1.

  • Wetherill, G. W. and Williams, J. G.: 1968, J. Geophys. Res. 73, 635.

    Google Scholar 

  • White, W. B. and Keester, K. L.: 1966, Am. Mineral. 51, 774.

    Google Scholar 

  • White, W. B. and Keester, K. L.: 1967, Am. Mineral. 52, 1508.

    Google Scholar 

  • Williams, J. G.: 1969, Ph.D. Thesis, Univ. Cal. Los Angeles.

  • Williams, J. G.: 1973, EOS Trans. Am. Geophys. Union 54, 233 (abstract).

    Google Scholar 

  • Williams, J. G.: 1976, in ‘Relationships Between Comets, Minor Planets and Meteorites’, IAU Coll. 39, Lyon, France, August 17–20, 1976, p. 19 (abstract).

  • Wisniewski, W. Z.: 1976, Icarus 28, 87.

    Google Scholar 

  • Wolff, M.: 1975, Appl. Optics 14, 1395.

    Google Scholar 

  • Wood, J. A.: 1967, Geochim. Cosmochim. Acta 31, 2095.

    Google Scholar 

  • Zellner, B.: 1975, Astrophys. J. Letters 198, L45.

    Google Scholar 

  • Zellner, B., Gehrels, T., and Gradie, J.: 1974, Astron. J. 79, 1100.

    Google Scholar 

  • Zellner, B., Wisniewski, W. Z., Andersson, L., and Bowell, E.: 1975, Astron. J. 80, 986.

    Google Scholar 

  • Zellner, B. and Gradie, J.: 1976a, Astron. J. 81, 262.

    Google Scholar 

  • Zellner, B. and Gradie, J.: 1976b, Icarus 28, 117.

    Google Scholar 

  • Zellner, B. and Bowell, E.: 1977, in A. H. Delsemme (ed.), The Interrelated Origin of Comets, Asteroids and Meteorites, University of Toledo Publications, p. 185.

  • Zellner, B., Leake, M., Lebertre, T., and Dollfus, A.: 1977a, Proc. 8th Lunar Science Conf., p. 1091.

  • Zellner, B., Andersson, L., and Gradie, J.: 1977b, Icarus 31, 447.

    Google Scholar 

  • Zellner, B., Leake, M., Morrison, D., and Williams, J. G.: 1977c, Geochim. Cosmochim. Acta. 41, 1759.

    Google Scholar 

  • Zimmerman, P. D. and Wetherill, G. W.: 1973, Science 182, 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaffey, M.J., McCord, T.B. Asteroid surface materials: Mineralogical characterizations from reflectance spectra. Space Sci Rev 21, 555–628 (1978). https://doi.org/10.1007/BF00240908

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240908

Keywords

Navigation