Skip to main content
Log in

The Toroidal Imaging Mass-Angle Spectrograph (TIMAS) for the polar mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The science objectives of the Toroidal Imaging Mass-Angle Spectrograph (TIMAS) are to investigate the transfer of solar wind energy and momentum to the magnetosphere, the interaction between the magnetosphere and the ionosphere, the transport processes that distribute plasma and energy throughout the magnetosphere, and the interactions that occur as plasma of different origins and histories mix and interact. In order to meet these objectives the TIMAS instrument measures virtually the full three-dimensional velocity distribution functions of all major magnetospheric ion species with one-half spin period time resolution. The TIMAS is a first-order double focusing (angle and energy), imaging spectrograph that simultaneously measures all mass per charge components from 1 AMU e−1 to greater than 32 AMU e−1 over a nearly 360° by 10° instantaneous field-of-view. Mass per charge is dispersed radially on an annular microchannel plate detector and the azimuthal position on the detector is a map of the instantaneous 360° field of view. With the rotation of the spacecraft, the TIMAS sweeps out very nearly a 4π solid angle image in a half spin period. The energy per charge range from 15 eV e−1 to 32 keV e−1 is covered in 28 non-contiguous steps spaced approximately logarithmically with adjacent steps separated by about 30%. Each energy step is sampled for approximately 20 ms;14 step (odd or even) energy sweeps are completed 16 times per spin. In order to handle the large volume of data within the telemetry limitations the distributions are compressed to varying degrees in angle and energy, log-count compressed and then further compressed by a lossless technique. This data processing task is supported by two SA3300 microprocessors. The voltages (up to 5 kV) for the tandem toroidal electrostatic analyzers and preacceleration sections are supplied from fixed high voltage supplies using optically controlled series-shunt regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anger, H. O.: 1966,Instr. Soc. Am. Trans. 5, 311.

    Google Scholar 

  • Bratschi, O., Ghielmetti, A. G., Shelley, E. G., and Balsiger, H.: 1993, ‘Experimental Tests of a Mass-Angle Spectrograph with Poloidal Ion Optics’,Rev. Sci. Instr. 64, 184.

    Google Scholar 

  • Bryant, D. A.: 1992, ‘Electron Acceleration in Space Plasmas’,Ann. Geophys. 10, 333.

    Google Scholar 

  • Carlson, C. W.: 1992, ‘The Fast Auroral Snapshot Explorer, EOS’,Trans. Amer. Geophys. U., 73, No. 23, June 9, p. 249.

    Google Scholar 

  • Cladis, J. B.: 1986, ‘Parallel Acceleration and Transport of Ions from Polar Ionosphere to Plasma Sheet’,Geophys. Res. Letters 13, 893.

    Google Scholar 

  • Chappell, C. R., Moore, T. E., and Waite, J.H., Jr.: 1987, ‘The Ionosphere as a Fully Adequate Source of Plasma for the Earth's Magnetosphere’,J. Geophys. Res. 92, 5896.

    Google Scholar 

  • Collin, H. L., Peterson, W. K., and Shelley, E. G.: 1987, ‘Solar Cycle Variation of Some Mass Dependent Characteristics of Upflowing Beams of Terrestrial Ions’,J. Geophys. Res. 92, 4757.

    Google Scholar 

  • Cowley, S. W. H.: 1982, ‘The Causes of Convection in the Earth's Magnetosphere: A Review of Developments During the IMS’,Rev. Geophys. Space Physics 20, 531.

    Google Scholar 

  • Fuselier, S. A., Klumpar, D. M., and Shelley, E. G.: 1991, ‘Ion Reflection and Transmission During Reconnection at the Earth's Subsolar Magnetopause’,Geophys. Res. Letters 18, 139.

    Google Scholar 

  • Fuselier, S. A., Shelley, E. G., and Klumpar, D. M.: 1993, ‘Mass Density and Pressure Changes Across the Dayside Magnetopause’,J. Geophys. Res. 98, 3935.

    Google Scholar 

  • Ghielmetti, A. G. and Shelley, E. G.: 1990, ‘Angle, Energy, and Time-of-Flight Focusing with Poloidal Toroid Electrostatic Analyzers’,Nucl. Instr. Methods A298, 181.

    Google Scholar 

  • Ghielmetti, A. G. and Young, D. T.: 1987, ‘A Double-Focusing Toroidal Mass Spectrograph for Energetic Plasma I’, TheoryNucl. Instr. Meth. A258, 297.

    Google Scholar 

  • Ghielmetti, A. G., Balsiger, H., Banninger, R., Eberhardt, P., Geiss, J., and Young, D. T.: 1983, ‘Calibration System for Satellite and Rocket-Borne Ion Mass Spectrometers in the Energy Range from eV/Charge to 100 keV/Charge’,Rev. Sci. Instrum. 54, 425.

    Google Scholar 

  • Hudson, P. D.: 1970, ‘Discontinuities in an Anisotropic Plasma and their Identification in the Solar Wind’,Planetary Space Sci. 18, 1611.

    Google Scholar 

  • Kintner, P. M. and Gorney, D. G.: 1984, ‘A Search for the Plasma Processes Associated with Perpendicular Ion Heating’,J. Geophys. Res. 89, 937.

    Google Scholar 

  • Klumpar, D. M., Fuselier, S. A., and Shelley, E. G.: 1990, ‘Ion Composition Measurements within Magnetospheric Flux Transfer Events’,Geophys. Res. Letters 17, 2305.

    Google Scholar 

  • Lennartsson, W. and Shelley, E. G.: 1986, ‘Survey of 0.1–16 keVe−1 Plasma Sheet Ion Composition’,J. Geophys. Res. 91, 3061.

    Google Scholar 

  • Lockwood, M., Waite, J. H., Jr., Moore, T. E., Johnson, J. F. E., and Chappell, C. R.: 1985, ‘A New Source of Suprathermal O+ Ions Near the Dayside Polar Cap Boundary’,J. Geophys. Res. 90, 4099.

    Google Scholar 

  • Martin, C., Jelinsky, P., Lampton, M., Malina, R. F., and Anger, H. O.: 1981,Rev. Sci. Instr. 52, 1067.

    Google Scholar 

  • Meng, C.-I., Rycroft, M. J., and Frank, L. A. (eds.): 1991,Auroral Physics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Redbook Committee: 1984,Science Plan for the Global Geospace Science Mission of the International Solar-Terrestrial Physics Program, NASA, Goddard Space Flight Center.

  • Reiff, P. H., Collin, H. L., Craven, J. O., Burch, J. L., Winningham, J. D., Shelley, E. G., Frank, L. A., and Friedman, M. A.: 1988, ‘Determination of Auroral Electrostatic Potentials Using High- and Low-Altitude Particle Distributions’,J. Geophys. Res. 93, 7441.

    Google Scholar 

  • Rice, R. F.: 1979,Some Practical Universal Coding Techniques, JPL Publication 79-22.

  • Rice, R. F. and Lee Jun-J.: 1983,Some Practical Universal Noiseless Coding Techniques, Part II, JPL Publication, 83-17.

  • Rosenbauer, H., Gruenwaldt, H., Montgomery, M. D., Paschmann, G., and Skopke, N.: 1975, ‘Heos 2 Plasma Observations in the Distant Polar Magnetosphere: The Plasma Mantle’,J. Geophys. Res. 80, 2723.

    Google Scholar 

  • Schwarz, H. E. and Lapington, J. S.: 1985,IEEE Trans. Nucl. Sci. NS32 433.

  • Shelley, E. G. and Collin, H. L.: 1991, C.-I. Meng, M. J. Rycroft, and L. A. Frank (eds.), ‘Auroral Ion Acceleration and Its Relationship to Ion Composition’,Auroral Physics, Cambridge University Press, Cambridge, p. 129.

    Google Scholar 

  • Shelley, E. G., Johnson, R. G., and Sharp, R. D.: 1972, ‘Satellite Observations of Energetic Heavy Ions During a Geomagnetic Storm’,J. Geophys. Res. 77, 6104.

    Google Scholar 

  • Shelley, E. G., Sharp, R. D., and Johnson, R. G.: 1976, ‘He++ and H+ Flux Measurements in the Day Side Cusp: Estimates of the Convection Electric Field’,J. Geophys. Res. 81, 2363.

    Google Scholar 

  • Shelley, E. G., Ghielmetti, A., Hertzberg, E., Battel, S. J., Altwegg-VonBurg, K., and Balsiger, H.: 1985, ‘The AMPTE CCE Hot Plasma Composition Experiment (HPCE)’,IEEE Trans. Geoscience and Remote Sensing GE-23, 241.

    Google Scholar 

  • Sonnerup, B. U. Ö. Papamastorakis, I., Paschmann, G., and Lühr, H.: 1990, The Magnetopause for Large Magnetic Shear: Analysis of Convection Electric Fields from AMPTE/IRM’,J. Geophys. Res. 95, 10541.

    Google Scholar 

  • Yau, A. W., Beckwith, P. H., Peterson, W. K., and Shelley, E. G.: 1985a, ‘Long-Term (Solar-Cycle) and Seasonal Variations of Upflowing Ionospheric Ion Events at DE 1 Altitudes’,J. Geophys. Res. 90, 6395.

    Google Scholar 

  • Yau, A. W., Shelley, E. G., Peterson, W. K., and Lenchyshyn, L.: 1985b, ‘Energetic Auroral and Polar Cap Ion Outflow at DE 1 Altitudes: Magnitude, Composition, Magnetic Activity Dependence, and Long Term Variations’,J. Geophys. Res. 90, 8417.

    Google Scholar 

  • Young, D. T. and Marshall, J. A.: 1990, ‘An Isochronous Poloidal Geometry Time-of-Flight Ion Mass Spectrometer for Energetic Space Plasmas’,Nucl. Instr. Methods A298, 227.

    Google Scholar 

  • Young, D. T., Balsiger, H., and Geiss, J.: 1982, ‘Correlations of Magnetospheric Ion Composition with Geomagnetic and Solar Activity’,J. Geophys. Res. 87, 9077.

    Google Scholar 

  • Young, D. T., Marshall, J. A., Burch, J. L., Booker, T. L., Ghielmetti, A. G., and Shelley, E. G.: 1987, ‘A Double-Focusing Toroidal Mass Spectrograph for Energetic Plasmas II’, Experimental Results,Nucl. Instr. Meth. A258, 304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelley, E.G., Ghielmetti, A.G., Balsiger, H. et al. The Toroidal Imaging Mass-Angle Spectrograph (TIMAS) for the polar mission. Space Sci Rev 71, 497–530 (1995). https://doi.org/10.1007/BF00751339

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00751339

Keywords

Navigation