Skip to main content
Log in

Global and local geospace modeling in ISTP

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The objective of the University of Maryland ISTP theory project is the development of the analytical and computational tools, which, combined with the data collected by the space and ground-based ISTP sensors, will lead to the construction of the first causal and predictive global geospace model. To attain this objective a research project composed of four complementary parts is conducted. First the global interaction of the solar wind-magnetosphe re system is studied using three-dimensional MHD simulations. Appropriate results of these simulations are made available to other ISTP investigators through the Central Data Handling Facility (CDHF) in a format suitable for comparison with the observations from the ISTP spacecrafts and ground instruments. Second, simulations of local processes are performed using a variety of non-MHD codes (hybrid, particle and multifluid) to study critical magnetospheric boundary layers, such as the magnetopause and the magnetotail. Third, a strong analytic effort using recently developed methods of nonlinear dynamics is conducted, to provide a complementary semi-empirical understanding of the nonlinear response of the magnetosphere and its parts to the solar wind input. The fourth part will be conducted during and following the data retrieval and its objective is to utilize the data base in conjunction with the above models to produce the next generation of global and local magnetospheric models. Special emphasis is paid to the development of advanced visualization packages that allow for interactive real time comparison of the experimental and computational data. Examples of the computational tools and of the ongoing investigations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashour-Abdalla, M.et al.: 1994, this volume.

  • Bargatze, L. F., Baker, D. N., McPerron, R. L., and Hones, E. W.: 1985, ‘Magnetospheric Impulse Response for Many Levels’,J. Geophys. Res. 90, 6387.

    Google Scholar 

  • Cargill, P. J.: 1990, ‘Hybrid Simulations of Tangential Discontinuities’,Geophys. Res. Letters 17, 1037.

    Google Scholar 

  • Cargill, P. J. and Goodrich, C. C.: 1987, ‘Shock Wave Interactions in a Collisionless Plasma’,Phys. Fluids 30, 2504.

    Google Scholar 

  • Cargill, P. J. and Eastman, T. E.: 1991, ‘The Structure of Tangential Discontinuities: 1. Results of Hybrid Simulations’.J. Geophys. Res. 96, 13763.

    Google Scholar 

  • Chang, C.-L., Mankofsky, A., Papadopoulos, K., and Cargill, P. J.: 1991, ‘Numerical Simulations of a Dynamically Thinning Magnetotail Plasma Sheet’,EOS 72(17), 252.

    Google Scholar 

  • Fedder, J. A. and Lyon, J. G.: 1987, ‘The Solar Wind—Magnetosphere-Ionosphere Current—Voltage Relationship’,Geophys. Res. Letters 14, 880.

    Google Scholar 

  • Fedder, J. A. and Lyon, J. G.: 1993, ‘The Earth's Magnetosphere is 165R E Long: or Self-Consistent Currents, Convention, Magnetospheric Structure and Processes for Northward IMF,J. Geophys Res., submitted.

  • Fedder, J. A., Mobarry, C. M., and Lyon,J. G.: 1991, ‘Reconnection Voltage as a Function of IMF Clock Angle’,Geophys. Res. Letters 18, 1047.

    Google Scholar 

  • Fedder, J. A., Lyon, J. G., and Mobarry, C. M.: 1992, ‘Currents, Convection, and the Solar Wind—Magnetosphere—Ionosphere Coupling as a Function of IMF Clock Angle’,J. Geophys. Res., submitted.

  • Goodrich, C. C. and Cargill, P. J.: 1991, ‘An Investigation of the Structure of Rotational Discontinuities’,Geophys. Res. Letters 18, 65.

    Google Scholar 

  • Goodrich C. C. and Lyon, J.: 1992, ‘MHD Simulation of the Windsock Effect’,EOS 73, 461.

    Google Scholar 

  • Grassberger, P. and Procaccia, I.: 1983, ‘Measuring the Strangeness of Strange Attractors’,Physica 9D, 189.

    Google Scholar 

  • Hain, K. H.: 1987, ‘The Partial Donor Method’,J. Comput. Phys. 73, 131.

    Google Scholar 

  • Huba, J. D., Hassam, A. B., and Winske, D.: 1990, ‘Stability of Sub-Alfvénic Plasma Expansions’,Phys. Fluids B2, 1676.

    Google Scholar 

  • Leroy, M., Winske, D., Goodrich, C. C., Wu, C. S., and Papadopoulos, K.: 1982, ‘The Structure of Perpendicular Bow Shocks’,J. Geophys. Res. 87, 5081.

    Google Scholar 

  • Lorenz, E. N.: 1963, ‘Deterministic Nonperiodic Flow’,J. Atmospheric Sci. 20, 130.

    Google Scholar 

  • Lui, A. T. Y., Chang, C.-L., Mankofsky, A., Wong, H. K., and Winske, D.: 1991, ‘A Cross-Field Current Instability for Substorm Expansion’,J. Geophys. Res. 96, 11389.

    Google Scholar 

  • Mankofsky, A., Sudan, R. N., and Denavit, J.: 1987, ‘Hybrid Simulations of Ion Beams in Background Plasma’,J. Comp Phys. 70, 89.

    Google Scholar 

  • Mankofsky, A., Antonsen, T. M., and Drobott, A. T.: 1990,An Implicit Electric Field Algorithm for Quasi-neutral Hybrid Plasma Simulations, SAIC Technical Report.

  • Papadopoulos, K.: 1985, in R. G. Stone and B. T. Tsurutani (eds.),Mirocinstabilities and Anomalous Transport in Collisonless Shocks, AGU Geophysical Monograph 34, p. 59.

  • Papadopoulos, K., Mankofsky, A., and Drobot, A. T.: 1988, ‘Long Range Cross-field Ion Beam Propagation in the Diamagnetic Region’,Phys. Rev. Letters 61, 94.

    Google Scholar 

  • Papadopoulos, K., Mankofsky, A., Davidson, R. C., and Drobot, A. T.: 1991, ‘Ballistic Cross-Field Ion Beam Propagation in a Magnetoplasma’,Phys. Fluids B3, 1075.

    Google Scholar 

  • Papadopoulos, K., Zhou, H. B., and Sharma, A. S.: 1994, ‘The Role of Helicons in Magnetospheric and Ionospheric Physics’,Comm. Plasma Phys. Cont. Fusion, in press.

  • Sharma, A. S.: 1993, in R. Z. Sagdeev (ed.),Nonlinear Dynamics of Space Plasma and Modeling in Recent Trends in Nonlinear Space Plasmas, Am. Inst. Phys., p. 141.

  • Sharma, A. S., Vassiliadis, D. V., and Papadopoulos, K.: 1993, ‘Low Dimensionality of Magnetospheric Activity from the Singular Spectrum Analysis’,Geophys. Res. Letters 20, 335.

    Google Scholar 

  • Vassiliadis, D. V., Sharma, A. S., Eastman, T. E., and Papadopoulos, K.: 1990, ‘Low Dimensional Chaos in Magnetospheric Activity’,Geophys. Res. Letters 17, 1841.

    Google Scholar 

  • Vassiliadis, D. V., Sharma, A. S., and Papadopoulos, K.: 1991, ‘Lyapunov Exponent of Magnetospheric Activity from AL Time Series’,Geophys. Res. Letters 18,1643.

    Google Scholar 

  • Vassiliadis, D., Sharma, A. S., and Papadopoulos, K.: 1992, in T. Bountis (ed.), ‘Time-series Analysis of Magnetospheric Activity Using Nonlinear Dynamical Methods’,Chaotic Dynamics: Theory and Practice, Plenum, New York.

    Google Scholar 

  • Vassiliadis, D. V., Sharma, A. S., and Papadopoulos, K.: 1993, ‘An Empirical Model Relating the Auroral Geomagnetic Activity to the Interplanetary Magnetic Field’,Geophys. Res. Letters 20, 1931.

    Google Scholar 

  • Winske, D.: 1985, ‘Hybrid Simulation Codes with Applications to Shock and Upstream Waves’,Space Sci. Rev. 42, 53.

    Google Scholar 

  • Winske, D. and Omidi, N.: 1991, in Matsumoto (ed.), ‘Hybrid Codes: Methods and Applications’,Lecture Notes for the 4th ISSS.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulos, K., Lyon, J.G., Goodrich, C.C. et al. Global and local geospace modeling in ISTP. Space Sci Rev 71, 671–690 (1995). https://doi.org/10.1007/BF00751346

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00751346

Keywords

Navigation