Skip to main content
Log in

TRANSPORT OF BACTERIA AND BACTERIOPHAGES IN IRRIGATED EFFLUENT INTO AND THROUGH AN ALLUVIAL GRAVEL AQUIFER

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The movement of bacteria and bacteriophages into and through an alluvial gravel aquifer was investigated at a bordered strip effluent irrigation scheme near Christchurch, New Zealand. Irrigation of one set of strips resulted in the contamination, by faecal coliform bacteria, and somatic and F-RNA coliphages, of two bores, approximately 60 m and 445 m downstream of the centre of the strips. F-RNA coliphages showed the greatest attenuation between the soil surface and the first bore, and faecal coliforms the least. Estimates of percolation times through the 13 m vadoze zone (based on times to peak concentration in the groundwater) ranged from 1.6 to 10.5 hr, with travel times for the bacteriophages being 1.4–3.4 times longer than for the bacteria. Injection of oxidation pond effluent containing rhodamine WT dye into the first bore resulted in contamination of the second bore (385 m downstream) by the dye, F-RNA coliphages, and faecal coliforms. In a second experiment, injection (into the same bore) of a mixture of phage MS–2, the bacterial tracer Escherichia coli J6–2, and rhodamine WT dye, produced a similar result in the downstream bore and in a newly-installed bore, 401 m downstream. In both injection experiments, the phages exhibited the shortest times to peak concentrations in the downstream bore(s), followed by the bacteria, and then the dye. Attenuation of the bacteria and phages was similar, but the microbes exhibited 100-fold greater reduction than the dye. Flow direction and longitudinal dispersivity were determined in a preliminary analysis using an idealised 2-D dispersion model. This information, and other measured and reported data, were then used as inputs in a 3-D dispersion model. The predicted concentration curves were matched to the observed curves by trial and error adjustment of the decay constant (λ). The best curve fits were obtained with λ values higher than those reported elsewhere. It is suggested that many of the reported microbial decay values underestimate microbial reductions in groundwater because they do not account for other removal mechanisms, such as filtration, sedimentation and irreversible adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Ashour, J., Joy, D. M., Lee, H., Whitely, H. R. and Zelin, S.: 1994, Water, Air, and Soil Pollut. 75, 141.

    Google Scholar 

  • Adams, M. H.: 1959, Bacteriophages, Interscience Publishers Inc., New York. p. 592.

    Google Scholar 

  • American Public Health Association: 1992, Standard Methods for the Examination of Water and Wastewater, 18th Edition. American Public Health Association, American Water Works Association, Water Pollution Control Federation. p. 949.

  • Ayrey, R. B. and Noonan, M. J.: 198¿, ‘The effect of land use on groundwater quality in central Canterbury’, in M. J. Noonan (ed.), Microbiology and Water Quality, Proceedings, Joint Conference N.Z. Committee on Water Pollution Research and N.Z. Microbiological Society. Technical Publication No. ¿, Department of Agricultural Microbiology, Lincoln College, Canterbury, New Zealand, pp. 69–78.

    Google Scholar 

  • Bales, R. C., Gerba, C. P., Grondin, G. H. and Jensen, S. L.: 1989, Appl. Environ. Microbiol. 55, 2061.

    Google Scholar 

  • Bales, R. C., Hinkle, S. R., Kroeger, T. W. and Stocking, K.: 1991, Environ. Sci. Technol. 25, 2088.

    Google Scholar 

  • Beven, K. and Germann, P.: 1982, Water Resour. Res. 18, 1¿11.

    Google Scholar 

  • Bitton, G. and Farrah, S. R.: 1986, Rev. Internat. des Sci. de l'Eau. 2, ¿1.

    Google Scholar 

  • Bitton, G., Farrah, S. R., Ruskin, R. H., Butner, J. and Chou, Y. G.: 198¿, Ground Water 21, 405.

    Google Scholar 

  • Canterbury Regional Council: 1990, General Authorisation for Septic Tank Effluent Disposal. Canterbury Regional Council, Christchurch, New Zealand, p. 9.

    Google Scholar 

  • Champ, D. R. and Schroeter, J.: 1988, ‘Bacterial Transport in Fractured Rock - A field scale tracer test in the Chalk River nuclear laboratories’, in B. H. Olson and D. Jenkins (eds.), Proceedings of the International Conference on Water and Wastewater Microbiology, Newport Beach, California, 8- 11 February, 1988, pp. 81–87.

  • Childs, C. W., Searle, P. L. and Wells, N.: 1977, Infiltration through Soil as a Tertiary Treatment of Effluent, New Zealand Soil Bureau Scientific Report No. 29, Department of Scientific and Industrial Research, Wellington. p. 28.

    Google Scholar 

  • Corapcioglu, M. Y. and Haridas, A.: 1984, J. Hydrol. 72, 149.

    Google Scholar 

  • Corapcioglu, M. Y. and Haridas, A.: 1985, Adv. Water Resour. 8, 188.

    Google Scholar 

  • Craun, G. F.: 1991, Wat. Sci. Tech. bf 24, 17.

  • Dickenson, R. A.: 1991, ‘Problems with using existing transport models to describe microbial transport in porous media’, in C. J. Hurst (ed.), Modeling the Environmental Fate of Microorganisms, American Society for Microbiology, pp. 21–47.

  • Domenico, P. A. and Schwartz, F. W.: 1990, Physical and Chemical Hydrogeology, John Wiley & Sons, New York. p. 807.

    Google Scholar 

  • Gerba, C. P. and Bitton, G.: 1984, ‘Microbial pollutants. Their survival and transport pattern to groundwater’, in G. Bitton and C. P. Gerba (eds.), Groundwater Pollution Microbiology, John Wiley & Sons, Inc., New York, pp. 65–88.

    Google Scholar 

  • Gerba, C. P. and Goyal, S. M.: 1985, ‘Pathogen removal from wastewater during groundwater recharge’, in T. Asano (ed.), Artificial Recharge of Groundwater, Butterworth Publishers, pp. 28¿–¿17.

  • Gerba, C. P., Goyal, S. M., Cech, I. and Bogdan, G. F.: 1982, Environ. Sci. Technol. 15, 940.

    Google Scholar 

  • Gerba, C. P., Yates, M. V. and Yates, S. R.: 1991, ‘Quantitation of factors controlling viral and bacterial transport in the subsurface’, in C. J. Hurst (ed.), Modelling the Environmental Fate of Microorganisms, American Society for Microbiology, pp. 77–88.

  • Germann, P. F., Smith, M. S. and Thomas, G. W.: 1987, Wat. Resour. Res. 2¿, 1281.

    Google Scholar 

  • Guy, E. M. and Small, J. A.: 1977, N. Z. J. Agric. Res. 20, 1¿.

    Google Scholar 

  • Guy, E. M and Visser, T. A.: 1979, N. Z. J. Agric. Res. 22, ¿41.

    Google Scholar 

  • Harvey, R. W.: 1991, ‘Parameters involved in modeling movement of bacteria in groundwater’, in C. J. Hurst (ed.), Modeling the Environmental Fate of Microorganisms, American Society for Microbiology, pp. 89–114.

  • Harvey, R. W., George, L. H., Smith, R. L. and LeBlanc D. R.: 1989, Environ. Sci. Technol. 2¿, 51.

    Google Scholar 

  • Harvey, R. W. and Garabedian, S. P.: 1991, Environ. Sci. Technol. 25, 178.

    Google Scholar 

  • Havelaar, A. H. and Hogeboom, W. M.: 1984, J. Appl. Bacteriol. 56, 4¿9.

    Google Scholar 

  • Havelaar, A. H., van Olphen, M. and Drost, Y.: 199¿, Appl. Environ. Microbiol. 59, 2956.

    Google Scholar 

  • Hopper, M. J.: 197¿, ‘Harwell subroutine library: a catalogue of subroutines’, United Kingdom Atomic Energy Authority, Report 7477, Harwell, p. 118.

  • IAWPRC.: 1991, Water Res. 25, 529.

    Google Scholar 

  • Kear, B. S., Gibbs, H. S. and Miller, R. B.: 1967, ‘Soils of the Downs and Plains, Canterbury and North Otago’, N. Z. Soil Bureau Bulletin 14, p. ¿5.

    Google Scholar 

  • Keswick, B. H. and Gerba, C. P.: 1980, Environ. Sci. Technol. 14, 1290.

    Google Scholar 

  • Martin, G. N. and Noonan, M. J.: 1977, Effects of Domestic Wastewater Disposal by Land Irrigation on Groundwater Quality of the Central Canterbury Plains. Water and Soil Technical Publication No. 7, Ministry of Works and Development, Wellington, New Zealand, p. 25.

    Google Scholar 

  • Marzouk, Y., Goyal, S. M. and Gerba, C. P.: 1979, Ground Water 17, 487.

    Google Scholar 

  • Matthess, G., Pekdeger, A. and Schroeter, J.: 1988, J. Contam. Hydrol. 2, 171.

    Google Scholar 

  • McFeters, G. A., Bissonnete, G. K., Jeseki, J. J., Thomson, C. A. and Stuart, D. G.: 1974, Appl. Environ. Microbiol. 27, 82¿.

    Google Scholar 

  • Moore, B. E., Sagik, B. P. and Sorber, C. A.: 1981, J. Water Poll. Contr. Fed. 5¿, 10.

    Google Scholar 

  • Noonan, M. J. and McNabb, J. F.: 1979, ‘Contamination of Canterbury groundwater by viruses’, in M. J. Noonan (ed.), Groundwater. The Quality and Movement of Groundwater in Alluvial Aquifers of New Zealand, Department of Agricultural Microbiology Technical Publication No. 2, Lincoln University, Canterbury, New Zealand, pp. 195–201.

    Google Scholar 

  • Park, N., Blandford, T. N. and Huyakorn, P. S.: 1992, VIRALT: A Modular Semi-Analytical and Numerical Model for Simulating Viral Transport in Groundwater, Prepared by HydroGeologic Inc. for USEPA. International Ground Water Modelling Centre, Colorado School of Mines, p. 74.

  • Pekdeger, A. and Matthess, G.: 198¿, Environmental Geology 5, 49.

    Google Scholar 

  • Peterson, T. C. and Ward, R. C.: 1989, Water Resources Bull. 25, ¿49.

    Google Scholar 

  • Rao, V. C. and Melnick, J. L.: 1986, Environmental Virology, American Society for Microbiology, Washington, D.C., USA, 88 pp.

    Google Scholar 

  • Sinton, L.W.: 1980a, Investigations into the Use of the Bacterial Species Bacillus stearothermophilus and Escherichia coli (H2S+) as Tracers of Groundwater Movement, Water and Soil Technical Publication No. 17, MWD, Wellington, p. 24.

  • Sinton, L. W.: 1980b, J. Hydrol. (NZ) 19, 119.

    Google Scholar 

  • Sinton, L. W.: 1982, N. Z. J. Marine Freshwater Res. 16, ¿17.

    Google Scholar 

  • Sinton, L. W.: 1984, Hydrobiologia 119, 161.

    Google Scholar 

  • Sinton, L. W.: 1986, Water, Air, and Soil Pollut. 28, 407.

    Google Scholar 

  • Sinton, L. W. and Close, M. E.: 198¿, Groundwater Tracing Experiments, Publication No. 2 of the Hydrology Centre, Ministry of Works and Development, Christchurch, New Zealand, p. ¿8.

    Google Scholar 

  • Sinton, L. W., Finlay, R. K. and Reid A. J.: 1996, J. Microbiol. Methods 25, 257.

    Google Scholar 

  • Slade, J. S.: 1985, Viruses and bacteria in a chalk well, Water Science and Technology 17, 111–125.

    Google Scholar 

  • Smart, P. L. and Laidlaw, I. M. S.: 1977, Water Resources Res. 1¿, 15.

    Google Scholar 

  • Smith, M. S., Thomas, G. W., White, E. E. and Retonga, D.: 1985, J. Environ. Qual. 14, 87.

    Google Scholar 

  • Sobsey, M. D., Shields, P. A., Hauchman, F. H., Hazard, R. L. and Caton, L. W.: 1986, Water. Sci. Technol. 18, 97.

    Google Scholar 

  • Suggate, R. P.: 197¿, Geological map of New Zealand, Sheet 21, Christchurch (2nd edition). N Z Department of Scientific and Industrial Research, Wellington.

  • Thorpe, H. R., Burden, R. J. and Scott, D. M.: 1982, Potential for Contamination of the Heretaunga Plains Aquifers, Water and Soil Technical Publication No. 24, Ministry of Works and Development, Wellington, New Zealand, p. 149.

    Google Scholar 

  • Tim, U. S. and Mostaghimi, S.: 1991, Ground Water 29, 251.

    Google Scholar 

  • Vaughn, J. M. and Landry, E. F.: 198¿, ‘Viruses in soils and groundwaters’, in G. Berg (ed.), Viral Pollution of the Environment. CRC Press. pp. 16¿–210.

  • Vilker, V. L. and Burge, W. D.: 1980, Water Res. 14, 78¿.

    Google Scholar 

  • Vilker, V. L.: 1981, ‘Simulating virus movement in soils’, in I. K. Iskandar (ed.), Modelling Wastewater Renovation: Land Treatment. John Wiley & Sons, New York, pp. 22¿–25¿.

    Google Scholar 

  • Westwood, J. C. N. and Sattar, S. A.: 1976, ‘The minimal infective dose’, in G. Berg, H. L. Bodily, E. H. Lennette, J. L. Melnick and T. G. Metcalf (eds.), Viruses in Water. American Public Health Association, Washington, D. C. pp. 61–69.

    Google Scholar 

  • Wilson, J. L. and Miller, P. J.: 1978, J. Hydraulics Div., Am. Soc. Civil Eng. 104, 50¿.

    Google Scholar 

  • Wilson, L. G., Gerba, C. P., Bolton, M. W. and Rose, J. B. P: 1984, ‘Subsurface transport of urban runoff pollutants’, in N. N. Durham and A. E. Redelfs (eds.), Proc. of the Second International Conference on Groundwater Quality Research, University Printing Services, Oklahoma State University, Stillwater, pp. 158–160.

    Google Scholar 

  • Wood, W. W. and Erlich, G. G.: 1978, Ground Water 16, ¿98.

    Google Scholar 

  • Yahya, M. T., Galsomies, L., Gerba, C. P. and Bales, R. C.: 199¿, Water. Sci. Technol. 27, 409.

    Google Scholar 

  • Yates, M. V., Gerba, C. P. and Kelly, L. M.: 1985, Appl. Environ. Microbiol. 49, 778.

    Google Scholar 

  • Yates, M. V. and Yates, S. R.: 1987, Water Res. 21, 1119.

    Google Scholar 

  • Yates, M. V., Yates, S. R., Wagner, J. and Gerba, C. P.: 1987, J. Contam. Hydrol. 1, ¿29.

    Google Scholar 

  • Yeh, G. T.: 1992, AT12¿D - Analytical Transient One-, Two-and Three-Dimensional Simulation of Waste Transport in the Aquifer System, International Ground Water Modelling Centre, Colorado School of Mines, 79 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SINTON, L.W., FINLAY, R.K., PANG, L. et al. TRANSPORT OF BACTERIA AND BACTERIOPHAGES IN IRRIGATED EFFLUENT INTO AND THROUGH AN ALLUVIAL GRAVEL AQUIFER. Water, Air, & Soil Pollution 98, 17–42 (1997). https://doi.org/10.1023/A:1026492110757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026492110757

Navigation