Skip to main content
Log in

A review of age-related changes in cerebellar β-adrenergic function and associated motor learning

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The present review provides an overview of age-related changes in cerebellar β-adrenergic function, associated motor learning, causal agents and possible treatments. Norepinephrine acts as a neuromodulator of Purkinje cell activity. With aging, however, the ability of norepinephrine to modulate Purkinje cell activity and specifically GABAergic inhibition of Purkinje cell activity is decreased. This age-associated deficit in cerebellar noradrenergic function correlates with deficits in acquisition of a motor learning task. Aged rats are delayed in acquiring a motor learning task that requires rats to adjust footfalls in order to cross a runway. The degree of deficit in cerebellar β-adrenergic activity correlated positively with the degree of impairment in task acquisition. One possible causal agent for the β-adrenergic deficit is free radical damage. Hyperoxia, which may generate free radical damage, induces cerebellar β-adrenergic deficits in young rats but diet restriction and treatment with antioxidants can delay or reverse age-related deficits in cerebellar β-adrenergic function in old rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloom, FE, Hoffer, BJ, and Siggins, GR: Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses. Brain Res., 25: 501–521, 1971.

    Article  PubMed  CAS  Google Scholar 

  2. Landis, SC, and Bloom, FE: Ultrastructural identification of noradrenergic boutons in mutant and normal mouse cerebellar cortex. Brain Res., 96: 299–305, 1975.

    Article  PubMed  CAS  Google Scholar 

  3. Mugnaini, E, and Dahl, A: Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken. J. Comp. Neuro., 162: 417–432, 1975.

    Article  CAS  Google Scholar 

  4. Pscheidt, GR, and Himwich, HE: Chicken brain amines: Normal levels and effects of resperpine and monoamine oxidase inhibitors. Prog. Brain. Res., 16: 245–248, 1965.

    Article  PubMed  CAS  Google Scholar 

  5. Eller, T, and Chan-Palay, V: Afferents to the cerebellar lateral nucleus. Evidence from retrograde transport of horseradish peroxidase after pressure injections through micropipettes. J. Comp. Neuro., 166: 285–302, 1976.

    Article  CAS  Google Scholar 

  6. Gould, TJ, Adams, CE, and Bickford, PC: β-adrenergic modulation of GABAergic inhibition in the deep cerebellar nuclei of F344 rats. Neuropharm., 36: 75–81, 1997.

    Article  CAS  Google Scholar 

  7. Hokfelt, T, and Fuxe, K: Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Exp. Brain. Res., 9: 63–72.

  8. Freedman, R, Hoffer, BJ, Woodward, DJ, and Puro, D: Interaction of norepinephrine with cerebellar activity evoked by mossy and climbing fibers. Exp. Neurol., 55: 269–288, 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Moises, HC, Woodward, DJ, Hoffer, BJ, and Freedman, R: Interaction of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis. Exp. Neurol., 64: 493–515, 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Parfitt, KD, Hoffer, BJ, and Bickford-Wimer, PC: Potentiation of gamma-aminobutyric acid-mediated inhibition of isoproterenol in the cerebellar cortex: Receptor specificity. Neuropharm., 29: 909–916, 1990.

    Article  CAS  Google Scholar 

  11. Parfitt, KD, and Bickford-Wimer, PC: Age-related subsensitivity of cerebellar Purkinje neurons to locally applied Beta1-selective adrenergic agonist. Neurobio. Aging, 11: 591–596, 1990.

    Article  CAS  Google Scholar 

  12. Yeh, HH, and Woodward, D J: Beta-1 adrenergic receptors mediate noradrenergic facilitation of Purkinje cell responses to gamma-aminobutyric acid in cerebellum of rat

  13. Sessler, FM, Mouradian, RD, Cheng, JT, Yeh, HH, Liu, W, and Waterhouse, BD: Noradrenergic potentiation of cerebellar Purkinje cell responses to GABA: Evidence for mediation through the β-adrenoceptor-coupled cyclic AMP system. Brain Res., 499: 27–38, 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Steinmetz, JE, and Thompson, RF: Neurobiology of learning, emotion and affect. New York, Raven Press, Ltd., 1991, pp. 97–119.

    Google Scholar 

  15. Ito, M: Recent achievements in restorative neurology 1: Upper motor neuron functions and dysfunctions. Switzerland, Karger, Basel, 1985, pp. 222–234.

    Google Scholar 

  16. Gould, TJ: β-adrenergic involvement in acquisition vs. extinction of a classically conditioned eye blink response in rabbits. Brain Res., 780: 174–177, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. van Neerven, J, Pompeiano, O, Collewijn, H, and van der Steen, J: Injections of β-adrenergic substances in the flocculus of rabbits affect adaptation of the VOR gain. Exp. Brain Res., 70: 249–260, 1990.

    Article  Google Scholar 

  18. Watson, M, and McElligott, JG: Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res., 296: 129–139, 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Heron, C, Gould, TJ, and Bickford, PC: Acquisition of a novel locomotor task is impaired by a beta adrenergic antagonist in F344 rats. Behav. Brain Res., 78: 235–241, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Bickford, PC, Hoffer, BJ, and Freedman, R: Interaction of norepinephrine with Purkinje cell responses to cerebellar afferent inputs in aged rats. Neurbio. Aging, 6: 89–94, 1985.

    Article  CAS  Google Scholar 

  21. Bickford, PC, Hoffer, BJ, and Freedman, R: Diminished interaction of norepinephrine with climbing fiber inputs to cerebellar Purkinje neurons in aged Fischer 344 rats. Brain Res., 385: 405–410, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Parfitt, KD: Age-related electrophysiological changes in cerebellar noradrenergic receptors. Age, 11: 120–127, 1988.

    CAS  Google Scholar 

  23. Cheun, JE, and Yeh, HH: Modulation of GABAA receptor-activated current by norepinephrine in cerebellar Purkinje cells. Neurosci., 51:951–960, 1992.

    Article  CAS  Google Scholar 

  24. Marwaha, J, Hoffer, BJ, Freedman, R: Changes in noradrenergic neurotransmission in rat cerebellum during aging. Neurobio. Aging, 2: 95–98, 1981.

    Article  CAS  Google Scholar 

  25. Gould, TJ, and Bickford, PC: Age-related deficits in the cerebellar beta adrenergic signal transduction cascade in Fischer 344 rats. J. Pharmacol. Exp. Ther., 281: 965–971, 1997.

    PubMed  CAS  Google Scholar 

  26. Sugawa, M and May, T: Age-related alterations in signal transduction: Involvement of the cAMP cascade. Brain Res., 618: 57–62, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Miller, JA, and Zahniser, NR: Quantitative autoradiographic analysis of 125I-pindolol binding in Fischer 344 rat brain: Changes in β-adrenergic receptor density with aging. Neurobio. Aging, 9: 267–272, 1988.

    CAS  Google Scholar 

  28. Pittman, RN, Minneman, KP, and Molinoff, PB: Alterations in the β1-and β2-adrenergic receptor density in the cerebellum of aging rats. J. Neurochem., 35: 273–275, 1980.

    PubMed  CAS  Google Scholar 

  29. Bickford, P, Heron, C, Young, DA, Gerhardt, GA, De La Garza, R: Impaired acquisition of novel locomotor tasks in aged and norepinephrine depleted F344 rats. Neurobio. Aging, 13: 475–481, 1992.

    Article  CAS  Google Scholar 

  30. Bickford, P: Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res., 620: 133–138, 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Gould, TJ, and Bickford, PC: The effects of aging on cerebellar β-adrenergic receptor activation and motor learning in female F344 rats. Neurosci. Lett., 216: 53–56, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Harman, D: The aging process. Proc. Natl. Acad. Sci., 78: 7124–7128, 1981.

    PubMed  CAS  Google Scholar 

  33. Hensley, K, Howard, BJ, Carney, JM, and Butterfield, DA: Membrane protein alterations in rodent erythrocytes and synaptosomes due to aging and hyperoxia. Biochem. Biophysic. Acta, 1270: 203–206, 1995.

    Google Scholar 

  34. Starke-Reed, PE, and Oliver, CN: Protein oxidation and proteolysis during aging and oxidative stress. Arch. of Biochem. and Biophysics, 275:559–567, 1989.

    Article  CAS  Google Scholar 

  35. Holmes, D, Gould, TJ, Beehler, C, Repine, J, and Bickford, PC: Protection from hyperoxia and age-related deficits in cerebellar β-adrenergic function in a breed of hyperoxia resistant rats. Soc. Neurosci. Abstr., 23: 350, 1997.

    Google Scholar 

  36. Gould, TJ, and Bickford, PC: The effects of chronic treatment with N-tert-butyl-a-phenylnitrone on cerebellar noradrenergic receptor function in aged F344 rats. Brain Res., 660: 333–336, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Carney, JM, Starke-Reed, PE, Oliver, CN, Landum, RW, Cheng, MS, Wu, JF, and Floyd, RA: Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-α-phenylnitrone. Proc. Natl. Acad. Sci., 88: 3633–3636, 1991.

    PubMed  CAS  Google Scholar 

  38. Sack, CA, Socci, DJ, Crandall, BM, and Arendash, GW: Antioxidant treatment with phenyl-α-tert-butyl nitrone (PBN) improves the cognitive performance and survival of aging rats Neurosci. Lett., 205: 181–184, 1996.

    Article  PubMed  CAS  Google Scholar 

  39. Gould, TJ, Chadman, K, and Bickford, PC: Antioxidant protection of cerebellar β-adrenergic receptor function in aged F344 rats. Neurosci Lett., 251: 1–4, 1998.

    Article  Google Scholar 

  40. Effros, RB, Walford, RL, Weindruch, R, and Mitcheltree, C: Influences of dietary restriction on immunity to influenza in aged mice. J. Gerontology, 46: B142–B147, 1991.

    CAS  Google Scholar 

  41. Herlihy, JT, Stacy, C, and Bertrand, HA: Long-term calorie restriction enhances baroreflex responsiveness in Fischer 344 rats. Amer. J. Physiology, 263: H1021–H1025, 1992.

    Google Scholar 

  42. McCay, CM, Crowell, MF, and Maynard, LA: The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutrition, 10: 63–79, 1935.

    CAS  Google Scholar 

  43. Ross, MH, and Bras, G: Tumor incidence patterns and nutrition in the rat. J. Nutrition, 87: 245–260, 1965.

    CAS  Google Scholar 

  44. Sohal, RS, Ku, HH, Agarwal, S., Forster, MJ, and Lal, H: Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. of Ageing and Dev: 74: 121–133, 1994.

    Article  CAS  Google Scholar 

  45. Thomas, J, Bertrand, H, Stacy, C, and Herlihy, JT: Long-term caloric restriction improves baroreflex sensitivity in aging Fischer 344 rats. J. Gerontology, 48: B151–B155, 1993.

    CAS  Google Scholar 

  46. Weindruch, R, and Walford, RL: The Retardation of Aging and Disease by Dietary Restriction. Springfield, IL, Thomas, 1988.

    Google Scholar 

  47. Weraarchakul, N, Strong, R, Wood, WG, and Richardson, A: The effect of aging and dietary restriction on DNA repair. Exp. Cell Res., 181: 197–204, 1989.

    Article  PubMed  CAS  Google Scholar 

  48. Yu, BP: Modulation of Aging Processes by Dietary Restriction. Boca Raton, FL, CRC Press, 1994.

    Google Scholar 

  49. Davis, LJ, Tadolini, B, Biagi, PL, Walford, R, and Licastro, F: Effect of age and extent of dietary restriction on hepatic microsomal lipid peroxidation potential in mice. Mech. of Ageing and Dev., 72 155–163, 1993.

    Article  CAS  Google Scholar 

  50. Feuers, RJ, Weindruch, R, and Hart, RW: Caloric restriction, aging, and antioxidant enzymes. Mutation Res., 295: 191–200, 1993.

    Article  PubMed  CAS  Google Scholar 

  51. Harman, D, Free radical theory of aging: nutritional implications. Age, 1: 145–152, 1978.

    Article  Google Scholar 

  52. Gould, TJ, Bowenkamp, KE, Larson, G, Zahniser, NR, and Bickford, PC: The effects of dietary restriction on motor learning and cerebellar noradrenergic dysfunction in aged F344 rats. Brain Res., 684: 150–158, 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Gould, T.J. A review of age-related changes in cerebellar β-adrenergic function and associated motor learning. AGE 22, 19–25 (1999). https://doi.org/10.1007/s11357-999-0003-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-999-0003-6

Key words

Navigation