Skip to main content
Log in

Three-half harmonic generation in laser-plasma interaction: Evidence for plasmon propagation

  • Published:
Il Nuovo Cimento D

Summary

Side emitted 3ω/2 radiation was studied by interacting 1.064 μm laser light with plasmas obtained from exploding thin foils. Both focusing (f/8) and collecting (f/7) optics were designed in order to reduce the instrumental bandwidth of the 3ω/2 spectrum. Time-resolved spectra and time-resolved images were obtained and analysed. All the observed spectral features, including the substantial lack of a «blue» component, the amount of red shift and bandwidth, are consistent with the Karttunen theory of half-integer harmonics generated in plasmas. This theory takes into account the propagation of ω/2 plasmons produced by «two plasmon decay» and their coupling with laser light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Karttunen:Laser Part. Beams,3, 157 (1985).

    Article  ADS  Google Scholar 

  2. R. L. Berger andL. V. Powers:Phys. Fluids,28, 2895 (1985).

    Article  ADS  Google Scholar 

  3. V. Yu. Bychenkov, V. P. Silin andV. T. Tikhonchuk:Sov. J. Plasma Phys.,3, 730 (1977).

    ADS  Google Scholar 

  4. W. Seka, B. B. Afeyan, R. Boni, L. M. Goldman, R. W. Short, K. Tanaka andT. W. Johnston:Phys. Fluids,28, 2570 (1985).

    Article  ADS  Google Scholar 

  5. S. Jackel, B. Perry andL. Lubin:Phys. Rev. Lett.,37, 95 (1976).

    Article  ADS  Google Scholar 

  6. Lin Zunqi, Tan Weihan, Gu Min, Mei Guang, Pan Chengming, Yu Wenyan andDeng Ximing:Laser Part. Beams,4, 223 (1985).

    Article  Google Scholar 

  7. T. A. Leonard andR. A. Cover:J. Appl. Phys.,50, 3241 (1979).

    Article  ADS  Google Scholar 

  8. P. D. Carter, S. M. L. Sim, H. C. Barr andR. G. Evans:Phys. Rev. Lett.,44, 1407 (1980).

    Article  ADS  Google Scholar 

  9. E. McGoldrick andS. M. L. Sim:Opt. Commun.,39, 172 (1981).

    Article  ADS  Google Scholar 

  10. L. V. Powers andR. J. Schroeder:Phys. Rev. A,29, 2298 (1984).

    Article  ADS  Google Scholar 

  11. V. Aboites, T. P. Hughes, E. McGoldrick, S. M. L. Sim, S. J. Karttunen andR. G. Evans:Phys. Fluids,28, 2555 (1985).

    Article  ADS  Google Scholar 

  12. F. Amiranoff, F. Briand andC. Labaune:Phys. Fluids,30, 2221 (1987).

    Article  ADS  Google Scholar 

  13. H. C. Pant K. Eidmann, P. Sachsenmaier andR. Sigel:Opt. Commun.,16, 396 (1976).

    Article  ADS  Google Scholar 

  14. R. E. Turner, D. W. Phillion, B. F. Lasinski andE. M. Campbell:Phys. Fluids,27, 511 (1984).

    Article  ADS  Google Scholar 

  15. D. M. Villeneuve, H. A. Baldis andC. J. Walsh:Phys. Fluids,28, 1454 (1985).

    Article  ADS  Google Scholar 

  16. C. Labaune, E. Fabre andG. Bonnaud:J. Plasma Phys.,38, 445 (1987).

    Article  ADS  Google Scholar 

  17. P. E. Young, B. F. Lasinski, W. L. Kruer, E. A. Williams, K. G. Estabrook, E. M. Campbell, R. P. Drake andH. A. Baldis:Phys. Rev. Lett.,61, 2766 (1988).

    Article  ADS  Google Scholar 

  18. E. F. Gabl, R. L. Berger, Gar. E. Bush, P. M. Campbell, R. J. Schroeder, C. L. Shepard andJ. A. Tarvin:Phys. Fluids, B,1, 1850 (1989).

    Article  ADS  Google Scholar 

  19. J. Meyer, Y. Zhu andF. L. Curzon:Phys. Fluids B,1, 650 (1989).

    Article  ADS  Google Scholar 

  20. A. I. Avrov, V. Yu. Bychenkov, O. N. Krokhin, V. V. Pustovalov, A. A. Rupasov, V. P. Silin, G. V. Sklizkov, V. T. Tikhonchuk andA. S. Shikanov:Sov. Phys. JETP,45, 507 (1977).

    ADS  Google Scholar 

  21. E. Z. Gusakov:Sov. Tech. Phys. Lett.,3, 504 (1977).

    Google Scholar 

  22. R. W. Short, W. Seka, K. Tanaka andE. A. Williams:Phys. Rev. Lett.,52, 1496 (1984).

    Article  ADS  Google Scholar 

  23. B. K. Sinha, S. R. Kumbhare andG. P. Gupta:Phys. Rev. A,36, 4859 (1987).

    Article  ADS  Google Scholar 

  24. R. A. London andM. D. Rosen:Phys. Fluids,29, 3813 (1986).

    Article  ADS  Google Scholar 

  25. C. S. Liu andM. N. Rosenbluth:Phys. Fluids,19, 967 (1976).

    Article  ADS  Google Scholar 

  26. A. Simon, R. W. Short, E. A. Williams andT. Dewandre:Phys. Fluids,26, 3107 (1983).

    Article  ADS  Google Scholar 

  27. A. A. Zozulya, V. P. Silin andV. T. Tikhonchuk:Sov. J. Plasma Phys.,13, 305 (1987).

    Google Scholar 

  28. D. W. Forslund, J. M. Kindel andE. L. Lindman:Phys. Fluids,18, 1002 (1975).

    Article  ADS  Google Scholar 

  29. Z. Z. Chen andE. Schifano: IFAM Internal Report, Jan. 1988.

  30. N. G. Basov, Yu. A. Zakharenkov, N. N. Zorev, G. V. Sklizkov, A. A. Rupasov, A. S. Shikanov: inHeating and Compression of Thermonuclear Targets by Laser Beam, edited byN. G. Basov (Cambridge University Press, Cambridge 1986), and references therein.

    Google Scholar 

  31. A. Giulietti, D. Giulietti, D. Batani, V. Biancalana, L. Gizzi, L. Nocera andE. Schifano:Phys. Rev. Lett.,63, 524 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giulietti, D., Biancalana, V., Batani, D. et al. Three-half harmonic generation in laser-plasma interaction: Evidence for plasmon propagation. Il Nuovo Cimento D 13, 845–858 (1991). https://doi.org/10.1007/BF02457172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02457172

PACS 52.50.Jm

PACS 52.35

Navigation