Skip to main content
Log in

Sex linkage in salmonids: Evidence from a hybridized genome of brook trout and arctic charr

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

In second-generation sparctics (Salvelinus fontinalis × Salvelinus alpinus) backcrossed toS. fontinalis, we have identified tight classical linkage of phenotypic sex withLdh-1, Aat-5, andGpi-3. We designate this locusSex-1 and suggest that it may be the primary sex-determining locus in salmonids. Cumulative salmonid gene-to-centromere map distances for the three biochemical loci put the order as centromere—Ldh-1—(Aat-5 andGpi-3), with the latter two loci being tightly linked. An absence of association of phenotypic sex (presumably Sex-1) with these same three loci and other loci known to be linked to these loci is shown in splakes (S. fontinalis × Salvelinus namaycush) and cutbows (Salmo gairdneri × Salmo clarki). These data imply that the linkage ofSex-1 with these loci is found only inS. alpinus and support the view thatSex-1 lies across the centromere from these three loci inS. alpinus, representing a Robertsonian fusion not found in any of the other four species. A similar specific Robertsonian fusion is argued forS. gairdneri, whereSex-1 may be linked across a centromere to another biochemical locus (Ha). These linkage results and chromosomal observations of other investigators suggest thatSex-1 lies on an information-depauperate arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F. W., and Thorgaard, G. H. (1984). Tetraploidy and the evolution of salmonid fishes. In Turner, B. J. (ed.),Evolutionary Genetics of Fishes Plenum Press, New York.

    Google Scholar 

  • Carmichael, G. J., Williamson, J. H., Schmidt, M. E., and Morizot, D. C. (1986). Genetic marker identification in largemouth bass with electrophoresis of low-risk tissues.Trans. Am. Fish. Soc. 115455.

    Google Scholar 

  • Chourrout, D. (1980). Thermal induction of diploid gynogenesis and triploidy in the eggs of the rainbow trout (Salmo gairdneri, Richardson).Reprod. Nutr. Dev. 20727.

    Google Scholar 

  • Gelman, W. A., Allendorf, F. W., and Thorgaard, G. H. (1987). Hexosaminidase is sex linked in rainbow trout.Isozyme Bull. 2014.

    Google Scholar 

  • Gold, J. R., Karel, W. J., and Strand, M. R. (1980). Chromosome formulae of North American fishes.Prog. Fish Cult. 4210.

    Google Scholar 

  • Hunter, G. A., Donaldson, E. M., Goetz, F. W., and Edgell, P. R. (1982). Production of all female and sterile groups of coho salmon (Oncorhynchus kisutch) and experimental evidence for male heterogamety.Trans. Am. Fish. Soc. 111367.

    Google Scholar 

  • Johnson, K. R. (1984).Protein Variation in Salmonidae: Genetic Interpretations of Electrophoretic Banding Patterns, Linkage Associations Among Loci, and Evolutionary Relationships Among Species Ph.D. thesis, Pennsylvania State University, University Park.

    Google Scholar 

  • Johnson, K. R., Wright, J. E., and May, B. (1987). Linkage relationships reflecting ancestral tetraploidy in salmonid fish.Genetics. 116579.

    Google Scholar 

  • Johnstone, R., Simpson, T. H., Youngson, A. F., and Whitehead, C. (1979). Sex reversal in salmonid culture. III. The progeny of sex-reversed rainbow trout.Aquaculture 1813.

    Google Scholar 

  • Kornfield, I., Beland, K. F., Moring, J. R., and Kircheis, F. W. (1981). Genetic similarity among endemic Arctic charr (Salvelinus alpinus) and implications for their management.Can. J. Fish. Aq. Sci. 3832.

    Google Scholar 

  • May, B. (1980).The Salmonid Genome: Evolutionary Restructuring Following a Tetraploid Event Ph.D. thesis, Pennsylvania State University, University Park.

    Google Scholar 

  • May, B., Wright, J. E., Jr., and Stoneking, M. (1979). Joint segregation of biochemical loci in Salmonidae: Results from experiments withSalvelinus and review of the literature on other species.J. Fish. Res. Board Can. 361114.

    Google Scholar 

  • May, B., Stoneking, M., and Wright, J. E., Jr. (1980). Joint segregation of biochemical loci in Salmonidae. II. Linkage associations from a hybridizedSalvelinus genome (S. namaycush × S. fontinalis).Genetics 95707.

    Google Scholar 

  • Muller, H. J. (1925). Why polyploidy is rarer in animals than in plants.Am. Nat. 59346.

    Google Scholar 

  • Okada, H., Matumoto, H., and Yamazaki, F. (1979). Functional masculinization of genetic females in rainbow trout.Bull. Jpn. Soc. Sci. Fish. 45413.

    Google Scholar 

  • Phillips, R. B., and Ihssen, P. E. (1985). Identification of sex chromosomes in lake trout (Salvelinus namaycush).Cytogenet. Cell Genet. 3914.

    Google Scholar 

  • Refstie, T., Stoss, J., and Donaldson, E. (1982). Production of all female coho salmon (Oncorhynchus kisutch) by diploid gynogenesis using irradiated sperm and cold shock.Aquaculture 2967.

    Google Scholar 

  • Rex, J. D. (1983).Cytogenetic Analyses of Sparctic Trout (Salvelinus alpinus × S. fontinalis), M.S. thesis, Pennsylvania State University, University Park.

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus).Stud. Genet. VI Univ. Tex. Publ. 710349.

    Google Scholar 

  • Thorgaard, G. H. (1977). Heteromorphic sex chromosomes in male rainbow trout.Science 196900.

    Google Scholar 

  • Thorgaard, G. H. (1978). Sex chromosomes in the sockeye salmon: A Y-autosome fusion.Can. J. Genet. Cytol. 20349.

    Google Scholar 

  • Thorgaard, G. H. (1983). Chromosomal differences among rainbow trout populations.Copeia 3650.

    Google Scholar 

  • Wright, J. E., Johnson, K., Hollister, A., and May, B. (1983). Meiotic models to explain classical linkage, pseudolinkage, and chromosome pairing in tetraploid derivative salmonid genomes.Isozymes Curr. Topics Biol. Med. Res. 10239.

    Google Scholar 

  • Wright, J. E., Johnson, K., and May, B. (1987). Synthetic linkage map of salmonid fishes (Salvelinus, Salmo, andOncorhynchus). In O'Brien, S. J. (ed.),Genetic Maps 1987, Vol. 4 Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 405–413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, B., Johnson, K.R. & Wright, J.E. Sex linkage in salmonids: Evidence from a hybridized genome of brook trout and arctic charr. Biochem Genet 27, 291–301 (1989). https://doi.org/10.1007/BF00554164

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554164

Key words

Navigation