Skip to main content
Log in

Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast tumor cells are relatively refractory to apoptosis in response to modalities which induce DNA damage such as ionizing radiation and the topoisomerase II inhibitor, adriamycin. Various factors which may modulate the apoptotic response to DNA damage include the p53 status of the cell, levels and activity of the Bax and Bcl-2 families of proteins, activation of NF-kappa B, relative levels of insulin like growth factor and insulin-like growth factor binding proteins, activation of MAP kinases and PI3/Akt kinases, (the absence of) ceramide generation and the CD95 (APO1/Fas) signaling pathway. Prolonged growth arrest associated with replicative senescence may represent an alternative and reciprocal response to DNA-damage induced apoptosis that is p53 and/or p21waf1/cip1 dependent while delayed apoptosis may occur in p53 mutant breast tumor cells which fail to maintain the growth-arrested state. Clearly, the absence of animmediate apoptotic response to DNA damage does not eliminate other avenues leading to cell death and loss of self-renewal capacity in the breast tumor cell. Nevertheless, prolonged growth arrest (even if ultimately succeeded by apoptotic or necrotic cell death) could provide an opportunity for subpopulations of breast tumor cells to recover proliferative capacity and to develop resistance to subsequent clinical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holt SE, Aisner DL, Shay JW, Wright WE: Lack of cell cycle regulation of telomerase activity in human cells. Proc Natl Acad Sci 94: 10687–10692, 1997

    Google Scholar 

  2. Crompton NE: Telomerases, senescence and cellular radiation response. Cell Mol Life Sci 53: 568–575, 1997

    Google Scholar 

  3. Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, Roninson IB: Role of p53 and p21waf1/cip1 in senescencelike terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18: 4808–4818, 1999

    Google Scholar 

  4. Chang WP, Little JB: Delayed reproductive cell death in xirradiated Chinese hamster ovary cells. Int J Rad Biol 60: 483–496, 1991

    Google Scholar 

  5. Szumiel I: Review: Ionizing radiation-induced cell death. Int J Radiat Biol 66: 329–341, 1994

    Google Scholar 

  6. Hendry JH, West CML: Apoptosis and mitotic cell death: their relative contributions to normal tissue and tumor radiation response. Int J Rad Biol 71: 709–719, 1997

    Google Scholar 

  7. Brown JM, Wouters BG: Apoptosis, p53 and tumor cell sensitivity to anticancer agents. Cancer Res 59: 1391–1399, 1999

    Google Scholar 

  8. Evan G, Littlewood T: A matter of life and cell death. Science 281: 1317–1322, 1998

    Google Scholar 

  9. Fulda S, Susin SA, Kroemer G, Debatin K-M: Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res 58: 4453–4460, 1998

    Google Scholar 

  10. Lowe SW, Ruley HE, Jacks T, Housman DE: p53 dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967, 1993

    Google Scholar 

  11. Lowe SW, Bodis S, Remington L, Ruley HE, Fisher D, Housman DE, Jacks T: p53 status and the efficacy of cancer therapy in vivo. Science 266: 807–810, 1994

    Google Scholar 

  12. Fan S, el Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace AJ Jr, Magrath I, Kohn KW, O'Connor PM: p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54: 5824–5830, 1994

    Google Scholar 

  13. Chiarugi V, Magnelli L, Cinelli M: Role of p53 mutations in the radiosensitivity status of tumor cells. Tumori 84: 517–520, 1998

    Google Scholar 

  14. Lam V, McPherson JP, Salmena L, Lees J, Chu W, Sexsmith E, Hedley DW, Freedman MH, Reed JC, Malkin D, Goldenberg GJ: p53 gene status and chemosensitivity of childhood acute lymphoblastic leukemia cells to adriamycin. Leuk Res 23: 871–880, 1999

    Google Scholar 

  15. Lai S, Perng R, Hwang J: p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci 7: 64–70, 2000

    Google Scholar 

  16. DiBiase SJ, Guan J, Curran WJ Jr, Iliakis G: Repair of DNA double strand breaks and radiosensitivity to killing in an isogenic group of p53 mutant cell lines. Int J Radiat Oncol Phys 45: 743–751, 1999

    Google Scholar 

  17. Danielsen T, Smith-Sorensen B, Gronlund HA, Hvidsten M, Borresen-Dale AL, Rofstad EK: No association between radiosensitivity and TP53 status, G1 arrest or protein levels of p53, myc, ras or raf in human melanoma lines. Int J Rad Biol 75: 1149–1160, 1999

    Google Scholar 

  18. Zhivotovsky B, Joseph B, Orrenius S: Tumor radiosensitivity and apoptosis. Exp Cell Res 248: 10–17, 1999

    Google Scholar 

  19. Houghton JA: Apoptosis and drug response. Curr Opin Oncol 11: 475–481, 1999

    Google Scholar 

  20. Watson NC, Jarvis WD, Orr MS, Grant S, Gewirtz DA: Radiosensitization of HL-60 human leukemic cells by bryostatin-1 in the absence of increased DNA fragmentation or apoptotic cell death. Int J Rad Biol 69: 183–192, 1996

    Google Scholar 

  21. Wang S, Guo Y, Castillo T, Dent P, Grant S: Potentiation of taxol-induced apoptosis and antiproliferative effects in human myeloid leukemic cells (U937) by bryostatin-1. Biochem Pharmacol 56: 635–644, 1998

    Google Scholar 

  22. Bracey TS, Miller JC, Paraskeva C: Radiation induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53. Oncogene 10: 2391–2396, 1995

    Google Scholar 

  23. Burger H, Nooter K, Boersma AW, Kortland CJ, van der Berg AP, Stoter G: Expression of p53, p21, Bcl-2, Bax, Bclx and Bak in radiation-induced apoptosis in testicular germ cell tumor lines. Int J Radiat Oncol Biol Phys 41: 415–424, 1998

    Google Scholar 

  24. Guillouf C, Rosselli F, Sjin RT, Moustacchi E, Hofman B, Liebermann DA: Role of a mutant p53 protein in apoptosis: characterization of a function independent of transcriptional trans-activation. Int J Oncol 13: 107–114, 1998

    Google Scholar 

  25. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW: Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311, 1991

    Google Scholar 

  26. Gudas J, Nguyen H, Li T, Hill D, Cowan KH: Effect of cell cycle, wild-type p53 and DNA damage on p21waf1=cip1 expression in human breast epithelial cells. Oncogene 11: 253–261, 1995

    Google Scholar 

  27. Barlow C, Brown KD, Deng CX, Tagle DA, Wynshaw BA: ATM selectively regulates distinct p53 dependent cell cycle checkpoint and apoptotic pathways. Nat Genet 17: 453–456, 1997

    Google Scholar 

  28. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD: Activation of the ATMkinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679, 1998

    Google Scholar 

  29. Zhang Y, Xiong Y, Yarbrough WG: ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and tumor suppressor pathways. Cell 92: 725–734, 1998

    Google Scholar 

  30. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA: The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92: 713–723, 1998

    Google Scholar 

  31. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Walters CM, Penn LZ, Hancock DC: Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128, 1992

    Google Scholar 

  32. Henneking H, Eick D: Mediation of myc induced apoptosis by p53. Science 265: 2091–2093, 1994

    Google Scholar 

  33. Wu X, Levine AJ: p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci 91: 3602–3606, 1994

    Google Scholar 

  34. DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR: Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci 94: 7245–7250, 1997

    Google Scholar 

  35. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF: Myc signaling via the ARF tumor suppressor regulates p53 dependent apoptosis and immortalization. Genes Dev 15: 2424–2433, 1998

    Google Scholar 

  36. Bates S, Philips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH: P14ARF links the tumor suppressors Rb and p53. Nature 395: 124–125, 1999

    Google Scholar 

  37. Miyashita T, Krajewski S, Krajewski M, Wang HG, Lin HK, Libermann DA, Hoffman B, Reed JC: Tumor suppressor p53 is a regulator of bcl-2 and bax expression in vitro and in vivo. Oncogene 9: 1799–1805, 1994

    Google Scholar 

  38. Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a homologue Bax that accelerates programmed cell death. Cell 74: 609–619, 1993

    Google Scholar 

  39. Otter I, Conus S, Ravn U, Rager M, Olivier R, Monney L, Fabbro D, Borner C: The binding properties and biological activities of Bcl-2 and bax in cells exposed to apoptotic stimuli. J Biol Chem 273: 6110–6120, 1998

    Google Scholar 

  40. Haldar S, Jena N, Croce C: Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci 92: 4507–4511, 1995

    Google Scholar 

  41. Blagosklonny MV, Giannakakou P, El-Deiry WS, Kingston DGI, Higgs PI, Neckers L, Fojo T: Raf/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 57: 130–135, 1997

    Google Scholar 

  42. Boise LH, Gonzales-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson C: bcl-x, a bcl-2 related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608, 1993

    Google Scholar 

  43. Schott AF, Apel IJ, Nunez G, Clarke MF: Bcl-x1 protects cancer cells from p53-mediated apoptosis. Oncogene 11: 1389–1394, 1995

    Google Scholar 

  44. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ: Bad, a heterodimeric partner for Bcl-x1 and Bcl-2 displaces Bax and promotes cell death, Cell 80: 285–291, 1995

    Google Scholar 

  45. Reed JC: Bcl-2 family proteins. Oncogene 17: 3225–3236, 1998

    Google Scholar 

  46. Marchetti P, Casteldo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G: Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184: 1155–1160, 1996

    Google Scholar 

  47. Vander Heiden MG, Chandel NS, Williamsonn EK, Schumacker PT, Thompson CB: Bcl-x1 regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627–637, 1997

    Google Scholar 

  48. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275: 1132–1136, 1997

    Google Scholar 

  49. Cheng EH-Y, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM: Conversion of Bcl-2 to a Bax like death effector by caspases. Science 278: 1966–1968, 1997

    Google Scholar 

  50. Cohen GM: Caspases: the executioners of apoptosis. Biochem J 326: 1–16, 1997

    Google Scholar 

  51. Zhou H, Henzel WJ, Liu X, Lutscheg A, Wang X: Apaf, a human protein analog to C elegans CED-4, participates in cytochrome c dependent activation of caspase 3. Cell 90: 405–413, 1997

    Google Scholar 

  52. Li P, Niyhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP dependent formation of Apaf1/caspase 9 complex. Cell 91: 479–489, 1997

    Google Scholar 

  53. Pan G, O'Rourke K, Dixit VM: Caspase 9, Bcl-xl and Apaf1 form a ternary complex. J Biol Chem 273: 5841–5845, 1998

    Google Scholar 

  54. Liu X, Zou H, Slaughter C, Wang X: DFF - a heterodimeric protein that functions downstream of caspase 3 to trigger DNA fragmentation. Cell 89: 175–184, 1997

    Google Scholar 

  55. Yonish-Rouach E, Reznitsky D, Lotem J, Sachs L, Kimchi A, Oren M: Wild-type p53 induces apoptosis of myeloid leukemic cells that is inhibited by interleukin-2. Nature 352: 345–347, 1991

    Google Scholar 

  56. Ling Y-H, Priebe W, Perez-Solar R: Apoptosis induced by anthracycline antibiotics in P388 parent and multidrug resistant cells. Cancer Res 53: 1845–1852, 1993

    Google Scholar 

  57. Skladanowski A, Konopa J: Adriamycin and daunomycin induce programmed cell death (apoptosis) in tumour cells. Biochem Pharmacol 46: 375–382, 1993

    Google Scholar 

  58. Zaleskis G, Berleth E, Verstovek S, Ehrke MJ, Mihich E: Doxorubicin-induced DNA degradation in murine thymocytes. Mol Pharmacol 46: 901–908, 1994

    Google Scholar 

  59. Radford IJ, Murphy TK, Radlev JM, Ellis SL: Radiation response of mouse lymphoma and melanoma cells Part II. Apoptotic death is shown in all cell lines examined. Int J Rad Biol 65: 217–277, 1994

    Google Scholar 

  60. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R: Ceramide synthase mediates daunorubicininduced apoptosis: an alternative mechanism for generating death signals. Cell 82: 405–414, 1995

    Google Scholar 

  61. Jaffrzou J-P, Levade T, Bettaieb A, Andrieu N, Bezombes C, Maestre N, Vermeersch S, Rousse A, Laurent G: Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J 15: 2417–2424, 1996

    Google Scholar 

  62. Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, Walker PR, Sikorska M: Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12: 3679–3684, 1993

    Google Scholar 

  63. Fornari FA, Jarvis WD, Grant S, Orr MS, Randolph JK, White FKH, Mumaw VR, Lovings ET, Freeman RH, Gewirtz DA: Induction of differentiation and growth arrest associated with nascent (nonoligosomal) DNA fragmentation and reduced c-myc expression in MCF-7 human breast tumor cells after continuous exposure to a sublethal concentration of doxorubicin. Cell Growth Diff 5: 723–733, 1994

    Google Scholar 

  64. Fan S, Smith ML, Rivet DJ, Duba D, Zhan Q, Kohn KW, Fornace AJ, O'Connor PM: Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 55: 1649–1654, 1995

    Google Scholar 

  65. Wosikowski K, Regis JT, Robey RW, Alvarez M, Buters JT, Gudas JM, Bates SE: Normal p53 status and function despite the development of drug resistance in human breast cancer cells. Cell Growth Diff 6: 139–151, 1995

    Google Scholar 

  66. Fornari FA, Jarvis WD, Orr MS, Randolph JK, Grant S, Gewirtz DA: Growth arrest and non-apoptotic cell death associated with the suppression of c-myc expression in MCF-7 breast tumor cells following acute exposure to doxorubicin. Biochem Pharmacol 51: 931–940, 1996

    Google Scholar 

  67. Sakakura C, Sweeney EA, Shirahama T, Igarashi Y, Hakomori S, Nakatani H, Tsujimoto H, Imanishi T, Ohgaki M, Ohyama T, Yamazaki J, Hagiwara A, Yamaguchu T, Sawai K, Takahashi T: Overexpression of Bax sensitizes human breast cancer MCF-7 cells to radiation induced apoptosis. Int J Cancer 67: 101–105, 1996

    Google Scholar 

  68. Saunders DE, Lawrence WD, Christensen C, Wappler NL, Ruan H, Deppe G: Paclitaxel-induced apoptosis in MCF-7 breast cancer cells. Int J Cancer 70: 214–220, 1997

    Google Scholar 

  69. Watson NC, Di Y-M, Orr MS, Fornari FA, Randolph JK, Magnet KJ, Jain PT, Gewirtz DA: The influence of ionizing radiation on proliferation, c-myc expression and the induction of apoptotic cell death in two breast tumor cell lines differing in p53 status. Int J Rad Biol 72: 547–559, 1997

    Google Scholar 

  70. Whitacre CM, Berger NA: Factors affecting topotecan induced programmed cell death: adhesion protects cells from apoptosis and impairs cleavage of poly(ADP)-ribosepolymerase. Cancer Res 57: 2157–2163, 1997

    Google Scholar 

  71. Sundaram S, Gewirtz DA: Promotion of apoptosis in response to radiation in p53 wild-type human breast tumor cells by the vitamin D3 analog EB 1089. Radiation Res 152: 479–486, 1999

    Google Scholar 

  72. Sundaram S, Chaudhry M, Reardon D, Gewirtz DA: EB 1089 enhances the antiproliferative and apoptotic effects of adriamycin in MCF-7 breast tumor cells. Breast Cancer Res Treat (In press)

  73. Strobl JS, Melkoumian Z, Peterson VA, Hylton H: The cell death response to gamma-irradiation is enhanced by a neuroleptic drug, pimozide. Breast Cancer Res Treat 51: 83–95, 1998

    Google Scholar 

  74. Chang BD, Broude EV, Dokmanvic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christou K, Roninson IP: A sensescence like phenotype distinguishes tumor cells that undergo terminal proliferation after exposure to anticancer drugs. Cancer Res 59: 3761–3767, 1999

    Google Scholar 

  75. Leung LK, Wang TTY: Differential effects of chemotherapeutic agents on the Bcl-2/Bax apoptosis pathway in human breast cancer cell line MCF-7. Breast Cancer Res Treat 55: 73–83, 1999

    Google Scholar 

  76. Ruiz-Ruiz M, Lopes-Rivas A: P53 mediated up-regulation of CD95 is not involved in genotoxic drug-induced apoptosis of human breast tumor cells. Cell Death Diff 6: 271–280, 1999

    Google Scholar 

  77. Andres JL, Fan S, Turkel GJ, Wang J-A, Twu N-F, Yuan R-Q, Lamszus K, Goldberg ID, Rosen EM: Regulation of BRCA1 and BRCA2 expression in human breast cancer cells by DNA damaging agents. Oncogene 16: 2229–2241, 1998

    Google Scholar 

  78. Fan S, Wang J-A, Yuan R-Q, Rockwell S, Andres J, Zlatapolskiy A, Goldberg ID, Rosen EM: Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene 17: 131–141, 1998

    Google Scholar 

  79. Hansen RK, Parra I, Lemieux P, Oesterreich S, Hilsenbeck SG, Fuqua SAW: Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56: 187–196, 1999

    Google Scholar 

  80. Koutsileris M, Reyes-Moreno C, Choki I, Sourla A, Doillon C, Paulidis N: Chemotherapy and cytotoxicity of human MCF-7 and MDA-MB231 breast cancer cells altered by osteoclast growth factors. Mol Med 5: 86–97, 1995

    Google Scholar 

  81. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B: Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501, 1998

    Google Scholar 

  82. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Langauer C, Kinzler KW, Vogelstein B: Disruption of p53 in human cancer cells alters the response to therapeutic agents. J Clin Invest 104: 263–269, 1999

    Google Scholar 

  83. Long BH, Musial ST, Brattain MG: Single-and doublestrand DNA breakage and repair in human lung adenocarcinoma cells exposed to etoposide and teniposide. Cancer Res 45: 3106–3112, 1985

    Google Scholar 

  84. Benjamin CW, Hiebsch RR, Jones DA: Caspase activation in MCF-7 cells responding to etoposide treatment. Mol Pharmacol 53: 446–450, 1998

    Google Scholar 

  85. Wilson JW, Wakeling AE, Morris ID, Hickman JA, Dive C: MCF-7 human mammary adenocarcinoma cell death in vitro in response to hormonal withdrawal and DNA damage. Int J Cancer 51: 502–508, 1995

    Google Scholar 

  86. Sumantran VN, Ealovega MW, Nunez G, Clarke MF, Wicha MS: Overexpression of Bcl-xs sensitizes MCF-7 cells to chemotherapy induced apoptosis. Cancer Res 55: 2507–2510, 1995

    Google Scholar 

  87. Gibson LF, Fortney J, Magro G, Ericson SG, Lynch JP, Landreth KS: Regulation of BAX and BCL-2 expression in breast cancer cells by chemotherapy. Breast Cancer Res Treat 55: 107–117, 1999

    Google Scholar 

  88. Sokolova IA, Cowan KH, Schneider E: Ca/Mg dependent endonuclease activation is an early event in VP-16 induced apoptosis of human breast MCF-7 cells in vitro. Biochim Biophys Acta 1266: 135–142, 1995

    Google Scholar 

  89. Hsiang YH, Lihou MG, Liu LF: Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanisms of cell killing by camptothecin. Cancer Res 49: 5077–5082, 1989

    Google Scholar 

  90. Wuerzberger SM, Pink JJ, Planchon SM, Byers KL, Bornmann WG, Boothman DA: Induction of apoptosis in MCF-7: WS8 breast cancer cells by beta-lapachone. Cancer Res 58: 1876–1885, 1998

    Google Scholar 

  91. Nieves-Neira W, Pommier Y: Apoptotic response to camptothecin and 7-hydroxystaurosporine (UCN-01) in the 8 human breast cancer cell lines of the NCI anticancer drug screen: multifactorial relationships with topoisomerase I, protein kinase C, Bcl-2, p53, MDM-2 and caspase pathways. Int J Cancer 82: 396–404, 1999

    Google Scholar 

  92. Liu W, Zhang R: Upregulation of p21waf1/cip1 in human breast cancer cell lines MCF-7 and MDA-MB468 undergoing apoptosis induced by natural product anticancer drugs 10-hydroxycamptothecin and camptothecin through p53-dependent and independent pathways. Int J Oncology 12: 793–804, 1998

    Google Scholar 

  93. Del Bino G, Darzynkiewicz Z, Degraef C, Mosselmans R, Fokan D, Galand P: Comparison of methods based on annexin V binding, DNA content or TUNEL for evaluating cell death in HL60 and adherent MCF-7 cells. Cell Prolif 32: 25–37, 1999

    Google Scholar 

  94. Zakeri Z, Bursch W, Tenniswood M, Lockshin RA: Cell death: programmed, apoptosis, necrosis or other? Cell Death Diff 2: 87–96, 1995

    Google Scholar 

  95. Merlo GR, Basolo F, Fiore L, Duboc L, Hynes NE: p53 dependent and p53 independent activation of apoptosis in mammary epithelial cells reveals a survival function of EGF and insulin. J Cell Biol 128: 1185–1195, 1995

    Google Scholar 

  96. Takahashi K, Sumimoto H, Suzuki K, Ono T: Protein synthesis dependent cytoplasmic translocation of p53 protein after serum stimulation of growth arrested cells. Mol Carcin 8: 58–66, 1993

    Google Scholar 

  97. Gudas J, Nguyen H, Li T, Hill D, Cowan KH: Effect of cell cycle, wild-type p53 and DNA damage on p21waf1/cip1 expression in human breast epithelial cells. Oncogene 11: 253–261, 1995

    Google Scholar 

  98. Sheikh MS, Li X-S, Chen J-C, Shao Z-M, Ordonez JV, Fontana JA: Mechanisms of regulation of waf1/cip1 gene expression in human breast carcinoma and role of p53 dependent and independent signal transduction pathways. Oncogene 9: 3407–3415, 1994

    Google Scholar 

  99. Orr MS, Watson NC, Sundaram S, Randolph JK, Jain PT, Gewirtz DA: Ionizing radiation and teniposide increase p21waf1/cip1 and promote Rb dephosphorylation but fail to suppress E2F activity in MCF-7 breast tumor cells. Mol Pharmacol 52: 373–379, 1997

    Google Scholar 

  100. Waldman T, Lengauer C, Kinzler KW, Vogelstein B: Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716, 1996

    Google Scholar 

  101. Chan TA, Hermeking H, lengauer C, Kinzler KW, Vogelstein B: 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616–620, 1999

    Google Scholar 

  102. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR: The E2F transcription factor is a cellular target for the Rb protein. Cell 65: 1053–1061, 1991

    Google Scholar 

  103. Weintraub SJ, Prater CA, Dean DC: Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358: 259–261, 1992

    Google Scholar 

  104. Wang JYJ, Knudsen ES, Welch PJ: The retinoblastoma tumor suppressor protein. Adv Cancer Res 64: 25–85, 1994

    Google Scholar 

  105. Beijersbergen RL, Bernards R: Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins. Biochim Biophys Acta 1287: 103–120, 1996

    Google Scholar 

  106. Farnham PJ, Slansky JE, R Kollmer: The role of E2F in the mammalian cell cycle. Biochim Biophys Acta 1155: 125–131, 1993

    Google Scholar 

  107. Sala A, Nicolaides NC, Engelhard A, Bellon T, Lawe DC, Arnold A, Grana X, Giordano A, Calabretta B: Correlation between E2F-1 requirement in the S phase and E2F-1 transactivation of cell cycle related genes in human cells. Cancer Res 54: 1402–1406, 1994

    Google Scholar 

  108. Weinberg RA: The retinoblastoma protein and cell cycle control. Cell 81: 323–330, 1995

    Google Scholar 

  109. Huang Y, Ishiko T, Nakada S, Utsugisawa T, Kato T, Yuan Z-M: Role for E2F in DNA damage induced entry of cells into S phase. Cancer Res 57: 3640–3643, 1997

    Google Scholar 

  110. Attardi LD, Lowe SW, Brugarolas J, Jacks T: Transcriptional activation by p53 but not induction of the p21 gene, is essential for oncogene mediated apoptosis. EMBO J 15: 3693–3701, 1996

    Google Scholar 

  111. Bissonnette N, Wasylyk B, Hubting DJ: The apoptotic and transcriptional transactivation activities of p53 can be dissociated. Biochem Cell Biol 75: 351–358, 1997

    Google Scholar 

  112. Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ: p21waf1/Cip1 protects against p53-mediated apoptosis of human melanoma cells. Oncogene 14: 929–935, 1997

    Google Scholar 

  113. Kagawa S, Fujiwara T, Hizuta A, Yasuda T, Zhang W-W, Roth JA, Tanaka N: p53 expression overcomes p21waf1/cip1 - mediated G1 arrest and induces apoptosis in human cancer cells. Oncogene 15: 1903–1909, 1997

    Google Scholar 

  114. Bargou RC, Daniel PT, Mapara MY, Bommert K, Wagener C, Kallinich B, Royer HD, Dorken B: Expression of the bcl-2 gene family in normal and malignant breast tissue: low Bax-alpha expression in tumor cells correlates with resistance towards apoptosis. Int J Cancer 60: 854–859, 1995

    Google Scholar 

  115. Zapata JM, Krajewska M, Krajewska S, Huang R-P, Takayama S, Wang H-G, Adamson E, Reed JC: Expression of multiple apoptosis regulatory genes in human breast cancer cell lines and primary tumors. Breast Cancer Res Treat 47: 129–140, 1998

    Google Scholar 

  116. Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL: Involvement of microtubules in the regulation of bcl-2 phosphorylation and apoptosis through cyclic AMP dependent protein kinase. Mol Cell Biol 18: 3509–3517, 1998

    Google Scholar 

  117. Wagener C, Bargou RC, Daniel PT, Bommert K, Mapara MY, Royer HD, Dorken B: Induction of the death promoting gene Bax sensitizes cultured breast cancer cells to drug-induced apoptosis. Int J Cancer 67: 138–141, 1996

    Google Scholar 

  118. Janicke RU, Spregart ML, Wati MR, Porter AG: Caspase 3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273: 9357–9360, 1998

    Google Scholar 

  119. Steinfeld Mathiesen I, Lademann U, Jaatela M: Apoptosis induced by vitamin D compounds is breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or p53. Cancer Res 59: 4848–4856, 1999

    Google Scholar 

  120. Wang CY, Mayo MW, Baldwin AS: TNF and cancer therapy induce apoptosis: potentiation by inhibition of NF kappa B. Science 274: 784–787, 1996

    Google Scholar 

  121. Manna SK, Zhang HJ, Yan T, Oberley LW, Aggarwal BB: Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor induced apoptosis and activation of nuclear transcription factor kB and activated protein-1. J Biol Chem 273: 13245–13254, 1998

    Google Scholar 

  122. Cai Z, Korner M, Tarantino N, Chouaib S: Ikappa B alpha overexpression in human breast carcinoma MCF7 cells inhibits nuclear factor kappa B activation. J Biol Chem 272: 96–101, 1997

    Google Scholar 

  123. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW: Suppression of tumor-necrosis factor induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappa B control. Proc Natl Acad Sci 94: 10057–10062, 1997

    Google Scholar 

  124. Jung M, Zhang Y, Dimtchev A, Dritschilo A: Impaired regulation of nuclear factor kappa B results in apoptosis induced by gamma irradiation. Radiation Res 149: 596–604, 1998

    Google Scholar 

  125. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC: The c-IAP-1 and cIAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16: 6914–6925, 1997

    Google Scholar 

  126. Duckett CS, Li F, Wang Y, Tomasello KJ, Thomson CB, Armstrong PE: Human IAP like protein regulates programmed cell death downstream of Bcl-xl and cytochrome c. Mol Cell Biol 18: 608–615, 1998

    Google Scholar 

  127. Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE: Aberrant nuclear factor kappa B/Rel expression and the pathogenesis of breast cancer. J Clin Invest 100: 2952–2960, 1997

    Google Scholar 

  128. de Moissac D, Mustapha S, Greenberg AH, Kirshenbaum LA: Bcl-2 activates the transcription factor NfkappaB through the degradation of the cytoplasmic inhibitor IkappaB alpha. J Biol Chem 273: 23946–23952, 1998

    Google Scholar 

  129. Helle SI, Lonning PE: Insulin-like growth factors in breast cancer. Acta Oncol 35 (Suppl 5): 19–22, 1996

    Google Scholar 

  130. Salahifar H, Baxter RC, Martin JL: Insulin-like growth factor binding protein (IGFBP)-3 protease activity secreted by MCF-7 breast cancer cells: inhibition by IGFs does not require IGF-IGFBP interaction. Endocrinology 138: 1683–1690, 1997

    Google Scholar 

  131. Gill ZP, Perks CM, Newcomb PV, Holly JMP: Insulinlike growth factor binding protein (IGFBP-3) predisposes breast cancer cells to programmed cell death in a non-IGF dependent manner. J Biol Chem 272: 25602–25607, 1997

    Google Scholar 

  132. Martin JL, Baxter RC: Oncogenic ras causes resistance to the growth inhibitor insulin-like growth factor binding protein 3 (IGFBP-3) in breast cancer cells. J Biol Chem 274: 16407–16411, 1999

    Google Scholar 

  133. Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N: The PI3 kinase/Akt signaling pathway delivers an anti-apoptotic signal. Gene Dev 11: 701–713, 1997

    Google Scholar 

  134. Kulik G, Klippel A, Weber MJ: Antiapoptotic signaling by the insulin-like growth factor I receptor, phosphatidylinositol 3 kinase and Akt. Mol Cell Biol 17: 1595–1606, 1997

    Google Scholar 

  135. Parrizas M, Saltiel AR, LeRoith D: Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 30 kinase and mitogen activated protein kinase pathways. J Biol Chem 272: 154–161, 1997

    Google Scholar 

  136. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME: Akt phosphorylation of BAD couples survival signals to the cell intrinsic death machinery. Cell 91: 231–234, 1997

    Google Scholar 

  137. Fang X, Yu S, Eder A, Mao M, Bast RC, Boyd D, Gills GB: Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen activated protein kinase pathway. Oncogene 18: 6635–6640, 1999

    Google Scholar 

  138. Gucev ZS, Oh Y, Kelley KM, Rosenfeld RG: Insulin-like growth factor binding protein 3 mediated retinoic acid and transforming growth factor beta 2 induced growth inhibition in human breast cancer cells. Cancer Res 56: 1545–1550, 1996

    Google Scholar 

  139. Guvakova MA, Surmacz E: Tamoxifen interferes with the insulin-like growth factor I receptor (IGF-IR) signaling pathway in breast cancer cells. Cancer Res 57: 2606–2610, 1997

    Google Scholar 

  140. Colston KW, Perks CM, Xie SP, Holly JMP: Growth inhibition of both MCF-7 and Hs578T human breast cancer cell lines by vitamin D analogs is associated with increased expression of insulin-like growth factor binding protein 3. JMol Endocrin 20: 157–162, 1998

    Google Scholar 

  141. Nickerson T, Huynh H, Pollak M: Insulin-like growth factor binding protein-3 induces apoptosis in MCF-7 breast cancer cells. Biochim Biophys Res Comm 237: 690–693, 1997

    Google Scholar 

  142. Geier A, Beery R, Haimsohn M, Karasik A: Insulin-like growth factor-1 inhibits cell death induced by anticancer drugs in the MCF-7 cells: involvement of growth factors in drug resistance. Cancer Invest 13: 480–486, 1995

    Google Scholar 

  143. Dunn SE, Hardman RA, Kari FW, Barrett JC: Insulin-like growth factor (IGF-1) alters drug sensitivity of HBL-100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs. Cancer Res 57: 2687–2693, 1997

    Google Scholar 

  144. Ahmad S, Singh N, Glazer RI: Role of AKT1 in 17β-estradiol and insulin-like growth factor 1 (IGF-1) dependent proliferation and prevention of apoptosis in MCF-7 breast carcinoma cells. Biochem Pharmacol 58: 425–430, 1999

    Google Scholar 

  145. Peruzzi F, Prosco M, Dews M, Salamoni P, Grassilli E, Romano G, Calabretta B, Baserga R: Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol 19: 7203–7215, 1999

    Google Scholar 

  146. Wang X, Martindale JL, Liu Y, Holbrook NJ: The cellular response to oxidative stress: influence of mitogen activated protein kinase signalling pathways on cell survival. Biochem J 333: 291–300, 1998

    Google Scholar 

  147. Vrana JA, Grant S, Dent P: Inhibition of the MAPK pathway abrogates Bcl-2 mediated survival of leukemia cells after exposure to low dose radiation. Radiation Res 151: 559–569, 1999

    Google Scholar 

  148. Reardon DB, Contessa JN, Mikkelsen RB, Valerie K, Amir C, Dent P, Schmidt-Ullrich RK: Dominant negative EGFRCD533 and inhibition of MAPK modify JNK-1 activation and enhance radiation toxicity of human mammary carcinoma cells. Oncogene 18: 4756–4766, 1999

    Google Scholar 

  149. Park J-S, Carter S, Reardon DB, Schmidt-Ullrich R, Dent P, Fisher PB: Roles for basal and stimulated p21 Cip1/waf1/MDA6 expression and mitogen activated protein kinase signaling in radiation induced cell cycle checkpoint control in carcinoma cells. Mol Biol Cell 10: 4231–4246, 1999

    Google Scholar 

  150. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RN: Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180: 525–535, 1994

    Google Scholar 

  151. Santana P, Pena LA, Hainovitz-Friedman A, Martin S, Green DR, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R: Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86: 189–199, 1996

    Google Scholar 

  152. Bruno AP, Laurent G, Averbeck D, Demur C, Bonnet J, Bettaieb A, Levade T, Jaffezou J-P: Lack of ceramide generation in TF-1 human myeloid leukemic cells resistant to ionizing radiation. Cell Death Diff 5: 172–182, 1998

    Google Scholar 

  153. Chmura SJ, Nodzenski E, Beckett MA, Kufe DW, Quintans J, Weichselbaum RR: Loss of ceramide production confers resistance to raadiation-induced apoptosis. Cancer Res 57: 1270–1275, 1997

    Google Scholar 

  154. Liu YY, Han TY, Guiliano AE, Cabot MC: Expression of glucosylceramide synthetase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells, J Biol Chem 274: 1140–1146, 1999

    Google Scholar 

  155. Lucci A, Han T-Y, Giuliano A, Cabot ME: Modification of ceramide metabolism increases cancer cell sensitivity to cytotoxics. Int J Oncol 15: 541–546, 1999

    Google Scholar 

  156. Friesen C, Fulda S, Debatin KM: Cytotoxic drugs and the CD95 pathway. Leukemia 13: 1854–1858, 1999

    Google Scholar 

  157. Friesen C, Herr I, Krammer PH, Debatin KM: Involvement of the CD95 (APO/FAS) receptor ligand system in druginduced apoptosis in leukemia cells. Nature Med 2: 574–577, 1996

    Google Scholar 

  158. Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM: The CD95 (APO/FAS) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 57: 3823–3828, 1997

    Google Scholar 

  159. Tillman DM, Petak I, Houghton JA: A fas-dependent component in 5-fluorouracil/leucovorin induced cytotoxicity in colon carcinoma cells. Clin Cancer Res 5: 425–430, 1999

    Google Scholar 

  160. Landowski TH, Gleason-Guzman MC, Dalton WS: Selection for drug resistance results in resistance to Fas-mediated apoptosis. Blood 89: 1854–1861, 1997

    Google Scholar 

  161. Fulda S, Los M, Friesen C, Debatin KM: Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int J Cancer 76: 105–114, 1998

    Google Scholar 

  162. Micheau O, Solary E, Hammann A, Martin F, Dimanche-Boitrel MT: Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity. J Natl Cancer Inst 89: 783–789, 1997

    Google Scholar 

  163. Muller M, Scaffidi CA, Galle PR, Stremmel W, Krammer PH: The role of p53 and the CD95 (APO1/FAS) death system in chemotherapy induced apoptosis. Eur Cyto Net 9: 685–686, 1998

    Google Scholar 

  164. Sheard MA, Krammer PH, Zaloudik J: Fractionatedgammairradiation renders tumour cells more responsive to apoptotic signals through CD95. Br J cancer 80: 1689–1696, 1999

    Google Scholar 

  165. Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT: Fas ligand independent, FADD mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 274: 7987–7992, 1999

    Google Scholar 

  166. Turley JM, Fu T, Ruscetti FW, Mikovits JA, Bertolette DC, Birchenall-Roberts MC: Vitamin E succinate induces Fasmediated apoptosis in estrogen receptor negative human breast tumor cells Cancer Res 57: 881–890, 1997

    Google Scholar 

  167. Keane MM, Ettenberg SA, Lowrey GA, Russell EK, Lipkowitz S: Fas expression and function in normal and malignant breast cancer cells. Cancer Res 56: 4791–4798, 1996

    Google Scholar 

  168. Herr I, Wilhelm D, Bohler T, Angel P, Debatin KM: Activation of CD95 (APO1/Fas) signaling by ceramide mediated cancer thereapy induced apoptosis. EMBO J 16: 6200–6208, 1997

    Google Scholar 

  169. Kiguchi K, Glesne D, Chubb CH, Fujiki H, Huberman E: Differential induction of apoptosis in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2 A. Cell Growth Diff 5: 995–1004, 1994

    Google Scholar 

  170. Cameron DA, Ritchie AA, Langdon S, Anderson TJ, Miller WR: Tamoxifen induced apoptosis in ZR-75 breast cancer xenografts antedates tumor regression. Breast Cancer Res Treat 45: 99–107, 1997

    Google Scholar 

  171. Toma S, Isnardi L, Raffo P, Dastoli G, De Francisci E, Riccardi L, Palumbo R, Bollag W: Effects of all-trans retinoic acid and 13-cis-retinoic acid on breast cancer cell lines: growth inhibition and apoptosis induction. Int J cancer 70: 619–627, 1997

    Google Scholar 

  172. Eck KM, Yuan L, Duffy L, Ram PT, Ayettey S, Chen I, Cohn CS, Reed JC, Hill SM: A sequential treatment regimen with melatonin and all-trans retinoic acid induces apoptosis in MCF-7 tumour cells. Br J Cancer 77: 2129–2137, 1998

    Google Scholar 

  173. Schaerli P, Jaggi R: EGF-induced programmed cell death of human mammary carcinoma MDA-MB468 cells is preceded by activation of AP-1. Cell Mol Life Sci 54: 129–138, 1998

    Google Scholar 

  174. Uckun FM, Narla RK, Jun X, Zeren T, Ven Katachalam T, Waddick KG, Rostostev A, Myers DE: Cytotoxic activity of epidermal growth factor-genistein against breast cancer cells. Clin Cancer Res 4: 901–912, 1998

    Google Scholar 

  175. Toma S, Isnardi L, Raffo P, Dastoli G, Riccardi L, Dastoli G, Apfel C, LeMotte P, Bollag W: Rar alpha antagonist RO 41-5253 inhibits proliferation and induces apoptosis in breast cancer cell lines. Int J Cancer 78: 86–94, 1998

    Google Scholar 

  176. DeVita VT, Hellman S, Rosenberg SA: Cancer: Principles and Practice of Oncology. Lippincott, 1998

  177. Aas T, Borresen A-L, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, Akslen LA, Lonning PE: Specific p53 mutations are associated with de vovo resistance to doxorubicin in breast cancer patients. Nature Med 2: 811–814, 1996

    Google Scholar 

  178. Falette N, Paperin M-P, Treilleux I, Gratadour A-C, Peloux N, Mignotte H, Tooke N, Lofman E, Inganas M, Bremond A, Ozturk M, Piisieux A: Prognostic value of p53 gene mutations in a large series of node-negative breast cancer patients. Cancer Res 55: 1451–1455, 1998

    Google Scholar 

  179. Ellis PA, Smith IE, Detre S, Burton SA, Salter J, A'Hern R, Walsh G, Johnston SR, Dowsett M: Reduced apoptosis and proliferations and increased Bcl-2 in residual breast cancer following preoperative chemotherapy. Breast Cancer Res Treat 48: 107–116, 1998

    Google Scholar 

  180. Shao Z-M, Li J, Wu J, Han Q-X, Shen Z-Z, Fontana JA, Barsky SH: Neo-adjuvant chemotherapy for operable breast cancer induces apoptosis. Breast Cancer Res Treat 53: 263–269, 1999

    Google Scholar 

  181. Wouters BG, Giaccia AJ, Denko NC, Brown JM: Loss of p21waf1/cip1 sensitizes tumors to radiation by an apoptosis independent mechanism. Cancer Res 57: 4703–4706, 1997

    Google Scholar 

  182. Han JW, Dionne CA, Kedersha NL, Goldmacher VS: p53 status affects the rate of onset but not the overall extent of doxorubicin-induced cell death in rat-1 fibroblasts constitutively expressing c-myc. Cancer Res 57: 176–182, 1997

    Google Scholar 

  183. Lock RB, Stribinskiene: dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res 56: 4006–4012, 1996

    Google Scholar 

  184. Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B, Williams J: Cell-cycle arrest versus cell death in cancer therapy. Nature Med 9: 1034–1036, 1997

    Google Scholar 

  185. Pietras RJ, Pegram MD, Finn RS, Mareval DA, Slamon DJ: Remission of human breast cancer xenografts in therapy with humanized monoclonal antibody to Her-2 receptor and DNA reactive drugs. Oncogene 17: 2235–2249, 1998

    Google Scholar 

  186. Baselga J, Norton L, Albanell J, Kim Y-M, Menddelsohn J: Recombinant humanize Anti Her-2 antibody enhances the antitumor activity of paclitaxel and doxorubicin against Her2/neu overexpressing human breast cancer xenografts. Cancer Res 58: 2825–2831, 1998

    Google Scholar 

  187. Hickman JA: Apoptosis and chemotherapy resistance. Eur J Cancer 32A: 921–926, 1996

    Google Scholar 

  188. Morgan FW, Day JP, Kaplan MI, McGhee EM, Limoli CL: Genomic instability induced by ionizing radiation. Radiation Res 146: 247–256, 1996

    Google Scholar 

  189. Olivier M, Bautista S, Vallies H, Theillet C: Relaxed cell cycle arrests and propagation of unrepaired chromosomal damage in cancer cell lines with wild type p53. Mol Carcin 23: 1–12, 1998

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gewirtz, D.A. Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage. Breast Cancer Res Treat 62, 223–235 (2000). https://doi.org/10.1023/A:1006414422919

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006414422919

Navigation