Skip to main content
Log in

The Controls of Microvascular Survival

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The regulation of microvascular survival impacts both developmental remodeling of the vasculature, and various microvascular pathologies. In pathological settings of vascular insufficiency, molecular targets to affect stabilization of neovascularization are needed. Conversely, an important part of anti-tumor angiogenesis is the de-stabilization of the tumor vasculature. In the study of vascular remodeling, one difficult challenge is to understand the molecular controls that allow regression of one entire vessel segment and not another. This phenomenon requires coordination of the survival signaling pathways to successfully impact vascular structure. This review describes the known mechanisms and molecules involved in microvascular and endothelial cell survival. In particular the mechanisms of molecular signaling for survival in vitro are discussed in light of what is known about microvascular survival in vivo. Possible ways to bring these data together to explain the complex regulation of vessel survival are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephens TD, Bunde CJ, Fillmore, BJ: Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol 59(12): 1489-1499, 2000

    Google Scholar 

  2. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13(1): 9-22, 1999

    Google Scholar 

  3. Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398): 843-845, 1995

    Google Scholar 

  4. Levy AP, Levy NS, Wegner S, Goldberg MA: Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270(22): 13 333-13 340, 1995

    Google Scholar 

  5. Ikeda E, Achen MG, Breier G, Risau W: Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 270(34): 19 761-19 766, 1995

    Google Scholar 

  6. Forsythe JA, Jiang BH, Iyer NY, Agani F, Leung SW, Koos RD, Semenza GL: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9): 4604-4613, 1996

    Google Scholar 

  7. Stein I, Neeman M, Shweiki D, Itin A, Keshet E: Stabilization of vascular endothelial growth factor mRNAby hypoxia and hypoglycemia and coregulation with other ischemiainduced genes. Mol Cell Biol 15(10): 5363-5368, 1995

    Google Scholar 

  8. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E: Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18(6): 3112-3119, 1998

    Google Scholar 

  9. McLeod DS, Brownstein R, Lutty GA: Vaso-obliteration in the canine model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 37(2): 300-311, 1996

    Google Scholar 

  10. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92(3): 905-909, 1995

    Google Scholar 

  11. Robbins SG, Rajaratnam VS, Penn JS: Evidence for upregulation and redistribution of vascular endothelial growth factor (VEGF) receptors flt-1 and flk-1 in the oxygen-injured rat retina. Growth Factors 16(1): 1-9, 1998

    Google Scholar 

  12. Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E: Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10): 1024-1028, 1995

    Google Scholar 

  13. Pe'er J, Folberg R, Itin A, Gnessin H, Hemo I, Keshet E: Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy. Br J Ophthalmol 80(3): 241-245, 1996

    Google Scholar 

  14. Antonetti DA, Lieth E, Barber AJ, Gardner TW: Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin Ophthalmol 14(4): 240-248, 1999

    Google Scholar 

  15. Duh E, Aiello LP: Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes 48(10): 1899-1906, 1999

    Google Scholar 

  16. Miller JW, Adamis AP, Aiello LP: Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab Rev 13(1): 37-50, 1997

    Google Scholar 

  17. Benjamin LE, Hemo I, Keshet E: A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125(9): 1591-1598, 1998

    Google Scholar 

  18. Darland DC, D'Amore PA: Blood vessel maturation: vascular development comes of age (comment). J Clin Invest 103(2): 157-158, 1999

    Google Scholar 

  19. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG: Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60(5): 1388-1393, 2000

    Google Scholar 

  20. Benjamin LE, Keshet E: Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA 94(16): 8761-8766, 1997

    Google Scholar 

  21. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E: Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal (see comments). J Clin Invest 103(2): 159-165, 1999

    Google Scholar 

  22. Abramovitch R, Dafni H, Smouha E, Benjamin LE, Neeman M: In vivo prediction of vascular susceptibility to vascular susceptibility endothelial growth factor withdrawal: magnetic resonance imaging of C6 rat glioma in nude mice. Cancer Res 59(19): 5012-5016, 1999

    Google Scholar 

  23. Jain RK, Safabakhsh N, Sckell A, Chen Y, Jiang P, Benjamin L, Yuan F, Keshet E: Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95(18): 10 820-10 825, 1998

    Google Scholar 

  24. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis (see comments). Cell 87(7): 1171-1180, 1996

    Google Scholar 

  25. Vikkula M, Boon LM, Carraway 3rd KL, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB, Olsen BR: Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2 (see comments). Cell 87(7): 1181-1190, 1996

    Google Scholar 

  26. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422): 1994-1998, 1999

    Google Scholar 

  27. Holash J, Wiegand SJ, Yancopoulos GD: New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18(38): 5356-5362, 1999

    Google Scholar 

  28. Zagzag D, Hooper A, Friedlander DR, Chan W, Holash J, Wiegand SJ, Yancopoulos GD, Grumet M: In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159(2): 391-400, 1999

    Google Scholar 

  29. Fujio Y, Walsh K: Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 274(23): 16 349-16 354, 1999

    Google Scholar 

  30. Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen J: The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. Embo J 14(23): 5884-5891, 1995

    Google Scholar 

  31. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC: Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275(13): 9102-9105, 2000

    Google Scholar 

  32. Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY: Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Circ Res 86(1): 24-29, 2000

    Google Scholar 

  33. Fujikawa K, de Aos Scherpenseel I, Jain SK, Presman E, Christensen RA, Varticovski L: Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells (published erratum appears in Exp Cell Res 25 Feb 255(1): 133, 2000). Exp Cell Res 253(2): 663-672, 1999

    Google Scholar 

  34. Goede V, Schmidt T, Kimmina S, Kozian D, Augustin HG: Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Invest 78(11): 1385-1394, 1998

    Google Scholar 

  35. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY: Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58(3): 224-237, 1999

    Google Scholar 

  36. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC: Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79(2): 213-223, 1999

    Google Scholar 

  37. Carmeliet P et al.: Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98(2): 147-157, 1999

    Google Scholar 

  38. Morales-Ruiz M, Fulton D, Sowa G, Languino LR, Fujio Y, Walsh K, Sessa WC: Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt (in process citation). Circ Res 86(8): 892-896, 2000

    Google Scholar 

  39. Wu LW, Mayo LD, Dunbar JD, Kessler KM, Baerwald MR, Jaffe EA, Wang D, Warren RS, Donner DB: Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J Biol Chem 275(7): 5096-5103, 2000

    Google Scholar 

  40. Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG, Kerbel RS: Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 264(3): 781-788, 1999

    Google Scholar 

  41. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N: Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46): 30 336-30 343, 1998

    Google Scholar 

  42. Hermann C, Assmus B, Urbich C, Zeiher AM, Dimmeler S: Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arterioscler Thromb Vasc Biol 20(2): 402-409, 2000

    Google Scholar 

  43. Madge LA, Pober JS: A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappa B in human endothelial cells (in process citation). J Biol Chem 275(20): 15 458-15 465, 2000

    Google Scholar 

  44. Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S: Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 20(5): 1886-1896, 2000

    Google Scholar 

  45. Radisavljevic Z, Avraham H, Avraham S: VEGF upregulates ICAM-1 expression via the PI3K/AKT/nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J Biol Chem, 2000

  46. Michell BJ, Griffiths JE, Mitchelhill KI, Rodriguez-Crespo I, Tiganis T, Bozinovski S, de Montellano PR, Kemp BE, Pearson RB: The Akt kinase signals directly to endothelial nitric oxide synthase. Curr Biol 9(15): 845-848, 1999

    Google Scholar 

  47. Ilan N, Mahooti S, Madri JA: Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. J Cell Sci 111(Pt 24): 3621-3631, 1998

    Google Scholar 

  48. Karsan A, Yee E, Poirier GG, Zhou P, Craig R, Harlan JM: Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol 151(6): 1775-1784, 1997

    Google Scholar 

  49. Nor JE, Christensen J, Mooney DJ, Polverini PJ: Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 154(2): 375-384, 1999

    Google Scholar 

  50. Gerber HP, Dixit V, Ferrara N: Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 81 and A1 in vascular endothelial cells. J Biol Chem 273(21): 13 313-13 316, 1998

    Google Scholar 

  51. O'Connor DS, Schechner JS, Adida C, Mesri M, Rothermel AL, Li F, Nath AK, Pober JS, Altieri DC: Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 156(2): 393-398, 2000

    Google Scholar 

  52. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME: Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms (see comments). Science 286(5443): 1358-1362, 1999

    Google Scholar 

  53. Dimmeler S, Assmus B, Hermann C, Haendeler J, Zeiher AM: Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ Res 83(3): 334-341, 1998

    Google Scholar 

  54. Garcia-Cardena G, Anderson KR, Mauri L, Gimbrone Jr. MA: Distinct mechanical stimuli differentially regulate the PI3K/Akt survival pathway in endothelial cells (in process citation). Ann NY Acad Sci 902: 294-297, 2000

    Google Scholar 

  55. Davies PF, Remuzzi A, Gordon EJ, Dewey Jr CF, Gimbrone Jr MA: Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA 83(7): 2114-2117, 1986

    Google Scholar 

  56. Tricot O, Mallat Z, Heymes C, Belmin J, Leseche G, Tedgui A: Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 101(21): 2450-2453, 2000

    Google Scholar 

  57. Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR, Figeys D, Harrison DG, Berk BC, Aebersold R, Corson MA: Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem 274(42): 30 101-30 108, 1999

    Google Scholar 

  58. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM:Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736): 601-605, 1999

    Google Scholar 

  59. Fisslthaler B, Dimmeler S, Hermann C, Busse R, Fleming I: Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand 168(1): 81-88, 2000

    Google Scholar 

  60. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC: Regulation of endothelium-derived nitric oxide production by the protein kinase Akt (published erratum appears in Nature 400(6746): 792 19 Aug 1999). Nature 399(6736): 597-601, 1999

    Google Scholar 

  61. Berger AC, Alexander HR, Tang G, Wu PS, Hewitt SM, Turner E, Kruger E, Figg WD, Grove A, Kohn E, Stern D, Libutti SK: Endothelial monocyte activating polypeptide II induces endothelial cell apoptosis and may inhibit tumor angiogenesis. Microvasc Res 60(1): 70-80, 2000

    Google Scholar 

  62. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N: Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6(1): 41-48, 2000

    Google Scholar 

  63. Ito H, Rovira II, Bloom ML, Takeda K, Ferrans VJ, Quyyumi AA, Finkel T: Endothelial progenitor cells as putative targets for angiostatin. Cancer Res 59(23): 5875-5877, 1999

    Google Scholar 

  64. Dixelius J, Larsson H, Sasaki T, Holmqvist K, Lu L, Engstrom A, Timpl R, Welsh M, Claesson-Welsh L: Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood 95(11): 3403-3411, 2000

    Google Scholar 

  65. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O'Reilly MS, Folkman J: Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60(7): 1878-1886, 2000

    Google Scholar 

  66. Yokoyama Y, Dhanabal M, Griffioen AW, Sukhatme VP, Ramakrishnan S: Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 60(8): 2190-2196, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benjamin, L.E. The Controls of Microvascular Survival. Cancer Metastasis Rev 19, 75–81 (2000). https://doi.org/10.1023/A:1026552415576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026552415576

Navigation