Skip to main content
Log in

The catalytic conversion of CO2 to hydrocarbons over Fe–K supported on Al2O3–MgO mixed oxides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Al2O3–MgO mixed oxides prepared by a co-precipitation method have been used as supports for potassium-promoted iron catalysts for CO2 hydrogenation to hydrocarbons. The catalysts have been characterized by XRD, BET surface area, CO2 chemisorption, TPR and TPDC techniques. The CO2 conversion, the total hydrocarbon selectivity, the selectivities of C2–C4 olefins and C5+ hydrocarbons are found to increase with increase in MgO content upto 20 wt% in Fe–K/Al2O3–MgO catalysts and to decrease above this MgO content. The TPR profiles of the catalysts containing pure Al2O3 and higher (above 20 wt%) MgO content are observed to contain only two peaks, corresponding to the reduction of Fe2O3 to Fe0 through Fe3O4. However, the TPR profile of 20 wt% MgO catalyst exhibits three peaks, which indicate the formation of iron phase through FeO phase. The TPDC profiles show the formation of three types of carbide species on the catalysts during the reaction. These profiles are shifted towards high temperatures with increasing MgO content in the catalyst. The activities of the catalysts are correlated with physico-chemical characteristics of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Shitaka, Shokubai (Catalyst) 33 (1991) 482 (in Japanese).

    CAS  Google Scholar 

  2. B. Delmon, Appl. Catal. B 1 (1992) 139.

    Article  Google Scholar 

  3. M.D. Lee, J.F. Lee and C.S. Chang, Bull. Chem. Soc. Jpn. 62 (1989) 2756.

    Article  CAS  Google Scholar 

  4. M.D. Lee, J.F. Lee and C.S. Chang, Appl. Catal. 72 (1991) 267.

    Article  CAS  Google Scholar 

  5. J.F. Lee, W.S. Cheen and M.D. Lee, Canad. J. Chem. Eng. 70 (1992) 511.

    Article  CAS  Google Scholar 

  6. Th. Bein, G. Schmiester and P.A. Jacobs, J. Phys. Chem. 90 (1986) 4851.

    Article  CAS  Google Scholar 

  7. G. Boskovic, G. Vlajnic, E. Kis, P. Putanov, L. Guczi and K. Lazar, Ind. Eng. Chem. Res. 33 (1994) 2090.

    Article  CAS  Google Scholar 

  8. C.H. Kuei, J.F. Lee and M.D. Lee, Chem. Eng. Comm. 101 (1991) 77.

    CAS  Google Scholar 

  9. A.P. Raje and B.H. Davis, Catal. Today 36 (1997) 335.

    Article  CAS  Google Scholar 

  10. P. Putanov, G. Boskovic, G. Vlajnic, E. Kis, K. Lazar and L. Guczi, J. Mol. Catal. 71 (1992) 81.

    Article  CAS  Google Scholar 

  11. P.-H. Choi, K.-W. Jun, S.-J. Lee, M.-J. Choi and K.-W. Lee, Catal. Lett. 40 (1996) 115.

    Article  CAS  Google Scholar 

  12. M.V. Cagnoli, S.G. Marchetti, N.G. Gallegos, A.M. Alvarez, R.C. Mercader and A.A. Yeramian, J. Catal. 123 (1990) 21.

    Article  CAS  Google Scholar 

  13. N.G. Gallegos, A.M. Alvarez, M.V. Cagnoli, J.F. Bengoa, S.G. Marchetti, R.C. Mercader and A.A. Yeramian, J. Catal. 161 (1996) 132.

    Article  CAS  Google Scholar 

  14. M.V. Cagnoli, S.G. Marchetti, N.G. Gallegos, A.M. Alvarez, A.A. Yeramian and R.C. Mercader, Mater. Chem. Phys. 27 (1991) 403.

    Article  CAS  Google Scholar 

  15. G.E. Vrieland, B. Khazai and C.B. Murchism, Appl. Catal. A 134 (1996) 123.

    Article  CAS  Google Scholar 

  16. M.E. Dry and G.J. Oosthuizen, J. Catal. 11 (1968) 18.

    Article  CAS  Google Scholar 

  17. E. Kemnitz, A. Hess, G. Rother and S. Troyanov, J. Catal. 159 (1996) 332.

    Article  CAS  Google Scholar 

  18. P. Berteau and B. Delmon, Catal. Today 7 (1989) 121.

    Article  Google Scholar 

  19. P.D. Caesar, J.A. Brennar, W.E. Garwood and J. Ciric, J. Catal. 56 (1979) 274.

    Article  CAS  Google Scholar 

  20. N.O. Egiebor, W.C. Cooper and B.W. Wojciechowski, Appl. Catal. 55 (1989) 47.

    Article  CAS  Google Scholar 

  21. N.O. Egiebor and W.C. Cooper, Appl. Catal. 14 (1985) 323.

    Article  CAS  Google Scholar 

  22. N.O. Egiebor, W.C. Cooper and B.W. Wojciechowski, Canad. J. Chem. Eng. 63 (1985) 826.

    Article  CAS  Google Scholar 

  23. A.J.H.M. Koch, H.M. Fortuin and J.W. Geos, J. Catal. 96 (1985) 261.

    Article  Google Scholar 

  24. X. Gao, J. Shen, Y. Hsia and Y. Chen, J. Chem. Soc. Faraday Trans. 89 (1993) 1079.

    Article  CAS  Google Scholar 

  25. T.R. Yuan, Z. Su, W. Chengyu, L. Dongbai and L. Liwu, J. Catal. 106 (1987) 440.

    Article  Google Scholar 

  26. I.R. Leith and M.G. Howden, Appl. Catal. 37 (1985) 75.

    Google Scholar 

  27. Y. Li, S. Wu, P. Ying and Q. Xin, React. Kinet. Catal. Lett. 40 (1989) 53.

    Article  CAS  Google Scholar 

  28. A. Barbier, E.B. Perecia and G.A. Martin, Catal. Lett. 45 (1997) 221.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishan, G., Lee, MW., Nam, SS. et al. The catalytic conversion of CO2 to hydrocarbons over Fe–K supported on Al2O3–MgO mixed oxides. Catalysis Letters 56, 215–219 (1998). https://doi.org/10.1023/A:1019089919614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019089919614

Navigation