Skip to main content
Log in

Tubulin and Neurofilament Proteins Are Transported Differently in Axons of Chicken Motoneurons

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

SUMMARY

1. We previously showed that actin is transported in an unassembled form with its associated proteins actin depolymerizing factor, cofilin, and profilin. Here we examine the specific activities of radioactively labeled tubulin and neurofilament proteins in subcellular fractions of the chicken sciatic nerve following injection of L-[35S]methionine into the lumbar spinal cord.

2. At intervals of 12 and 20 days after injection, nerves were cut into 1-cm segments and separated into Triton X-100-soluble and particulate fractions. Analysis of the fractions by high-resolution two-dimensional gel electrophoresis, immunoblotting, fluorography, and computer densitometry showed that tubulin was transported as a unimodal wave at a slower average rate (2–2.5 mm/day) than actin (4–5 mm/day). Moreover, the specific activity of soluble tubulin was five times that of its particulate form, indicating that tubulin is transported in a dimeric or small oligomeric form and is assembled into stationary microtubules.

3. Neurofilament triplet proteins were detected only in the particulate fractions and transported at a slower average rate (1 mm/day) than either actin or tubulin.

4. Our results indicate that the tubulin was transported in an unpolymerized form and that the neurofilament proteins were transported in an insoluble, presumably polymerized form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Angelides, K. J., Smith, K. E., and Takeda, S. (1989). Assembly and exchange of intermediate filament proteins of neurons: Neurofilaments are dynamic structures. J. Cell Biol. 108:1495-1506.

    Google Scholar 

  • Bass, P. W., and Brown, A. (1997). Slow axonal transport: The polymer transport model. Trends Cell Biol. 7:380-384.

    Google Scholar 

  • Baitinger, C., and Willard, M. (1987). Axonal transport of synapsin I-like proteins in rabbit retinal ganglion cells. J. Neurosci. 7:3723-3735.

    Google Scholar 

  • Bamburg, J. R., Bray, D., and Chapman, K. (1986). Assembly of microtubules at the tip of growing axons. Nature (Lond.) 321:788-790.

    Google Scholar 

  • Bamburg, J. R., Minamide, L. S., Morgan, T. E., Hayden, S. M., Guiliano, K. A., and Koeffer, A. (1991). Purification and characterisation of low-molecular weight actin-depolarising proteins from brain and cultured cells. Meth. Enzymol. 196:125-140.

    Google Scholar 

  • Black, M. M., and Lasek, R. J. (1980). Slow components of axonal transport: Two cytoskeletal networks. J. Cell Biol. 86:616-623.

    Google Scholar 

  • Bray, D. (1997). The riddle of slow axonal transport-An introduction. Trends Cell Biol. 7:379.

    Google Scholar 

  • Bray, J. J., Fernyhough, P., Bamburg, J. R., and Bray, D. (1992). Actin depolymerising factor is a component of slow axonal transport. J. Neurochem. 58:2081-2087.

    Google Scholar 

  • Chang, S., Svitkina, T. M., Borisy, G. G., Popov, S. V. (1999). Speckle microscopic evaluation of microtubule transport in growing nerve processes. Nature Cell Biol. 1:399-403.

    Google Scholar 

  • Filliatreau, G., Denoulet, P., de Nechaud, B., and Di Giamberardino, L. (1988). Stable and metastable cytoskeletal polymers carried by slow axonal transport. J. Neurosci. 8:2227-2233.

    Google Scholar 

  • Funakoshi, T., Takeda, S., and Hirokawa, N. (1996). Active transport of photoactivated tubulin molecules in growing axons by a new electron microscopic analysis. J. Cell Biol. 133:1347-1353.

    Google Scholar 

  • Galbraith, J. A., Reese, T. S., Schlief, M. L., and Gallant, P.E. (1999). Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proc. Natl. Acad. Sci. USA 96:11589-11594.

    Google Scholar 

  • Gandal, C. P. (1969). Avian anaesthesia. Fed. Proc. 28:1533-1534.

    Google Scholar 

  • Hirokawa, N. (1993). Axonal transport and cytoskeleton. Curr. Opin. Neurobiol. 3:724-731.

    Google Scholar 

  • Hirokawa, N., Terado, S., Funakoshi, T., and Takeda, S. (1997). Slow axonal transport: The subunit transport model. Trends Cell Biol. 7:384-388.

    Google Scholar 

  • Hoffman, P. N., and Lasek, R. J. (1975). The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66:351-366.

    Google Scholar 

  • Jacob, J. M., and McQuarrie, I. G. (1996). Assembly of microfilaments and microtubules from axonally transported actin and tubulin after axotomy. J. Neurosci. Res. 43:412-419.

    Google Scholar 

  • Koehnle, T. J., and Brown, A. (1999). Slow axonal transport of neurofilament protein in cultured neurons. J. Cell Biol. 144:447-458.

    Google Scholar 

  • Lasek, R. J. (1986). Polymer sliding in axons. J. Cell Sci. 5(Suppl.):161-179.

    Google Scholar 

  • Lasek, R. J., Garner, J. A., and Brady, S. T. (1984). Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99:212s-221s.

    Google Scholar 

  • Miller, K. E., and Joshi, H. C. (1996). Tubulin transport in neurons. J. Cell Biol. 133:1355-1366.

    Google Scholar 

  • Mills, R. G., Minamide, L. S., Yuan, A., Bamburg, J. R., and Bray, J. J. (1996a). Slow axonal transport of soluble actin with actin depolymerising factor, cofilin and profilin suggests actin moves in an unassembled form. J. Neurochem. 67:1225-1234.

    Google Scholar 

  • Mills, R. G., Yuan, A., and Bray, J. J. (1996b). The axonal transport and assembly of tubulin into microtubules. Proc. Physiol. Soc. N Z 15:27.

    Google Scholar 

  • Morris, J. R., and Lasek, R. J. (1982). Stable polymers of the axonal cytoskeleton: The axoplasmic ghost. J. Cell Biol. 92:192-198.

    Google Scholar 

  • Morris, J. R., and Lasek, R. J. (1984). Monomer-polymer equilibria in the axon: Direct measurement of tubulin and actin as polymer and monomer in axoplasm. J. Cell Biol. 98:2064-2076.

    Google Scholar 

  • Nixon, R. A. (1998). The slow axonal transport of cytoskeletal proteins. Curr. Opin. Cell Biol. 10:87-92.

    Google Scholar 

  • Nixon, R. A., Lewis, S. E., Dahl, D., Marotta, C. A., and Drager, U. C. (1989). Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: Neuronal sites and time course in relation to subunit polymerization and axonal transport. Brain Res. Mol. Brain Res. 5:93-108.

    Google Scholar 

  • Nixon, R. A., Lewis, S. E., Mercken, M., and Sihag, R. K. (1994). [32P]Orthophosphate and [35S]methionine label separate pools of neurofilaments with markedly different axonal transport kinetics in mouse retinal ganglion cells in vivo. Neurochem. Res. 19:1445-1453.

    Google Scholar 

  • Okabe, S., and Hirokawa, N. (1990). Turnover of fluorescently labelled tubulin and actin in the axon. proteins. Nature (Lond.) 343:479-482.

    Google Scholar 

  • Sabry, J., O'Connor, T. P., and Kirschner, M. W. (1995). Axonal transport of tubulin in Ti1 pioneer neurons in situ. Neuron 14:1247-1256.

    Google Scholar 

  • Takeda, S., Funakoshi, T., and Hirokawa, N. (1995). Tubulin dynamics in neuronal axons of living zebrafish embryos. Neuron 14:1257-1264.

    Google Scholar 

  • Tashiro, T., and Komiya, Y. (1983). Subunit composition specific to axonally transported tubulin. Neuroscience 9:943-950.

    Google Scholar 

  • Tashiro, T., and Komiya, Y. (1989). Stable and dynamic forms of cytoskeletal proteins in slow axonal transport. J. Neurosci. 9:760-768.

    Google Scholar 

  • Terada, S., Takata, T., Peter, A. C., and Hirokawa, N. (1996). Visualisation of slow axonal transport in vivo. Science 273:784-788.

    Google Scholar 

  • Wang, L., Ho, C.-L., Sun, D., Liem, R. K. H., and Brown, A. (2000). Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nature. Cell Biol. 2:137-141.

    Google Scholar 

  • Wessel, D. and Flügge, U. I. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138:141-143.

    Google Scholar 

  • Yuan, A., Mills, R. G., Bamburg, J. R., and Bray, J. J. (1999). Cotransport of glyceraldehyde-3-phosphate dehydrogenase and actin in axons of chicken motoneurons. Cell Mol. Neurobiol. 19:733-744.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, A., Mills, R.G., Chia, C.P. et al. Tubulin and Neurofilament Proteins Are Transported Differently in Axons of Chicken Motoneurons. Cell Mol Neurobiol 20, 623–632 (2000). https://doi.org/10.1023/A:1007090422866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007090422866

Navigation