Skip to main content
Log in

7-Aminobutyric Acid (GABA) Removal from the Synaptic Cleft: A Postsynaptic Event?

  • Review and Commentary
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    In the present commentary we discuss the adequacy of Na+ transport-coupled presynapticγ-aminobutyric acid (GABA) uptake systems for the removal of GABA from the synaptic cleft. This discussion is based on the accepted stoichiometry for GABA presynaptic internalization, GABAout + 3Na +out + K +in ⇋ GABAin + 3Na +in + K +out , on the parameters reported in the literature for typical synaptosomal preparations, and on the assumption that GABA removal must be a quick event (⩽ 2 msec), as derived from electrophysiological studies.

  2. 2.

    On these bases, we have developed a calculation in order to evaluate the time course of synaptic cleft GABA removal by presynaptic systems and ended up with an overall value (t ∼ 0.3 sec) which does not fit with the data derived from electrophysiological recordings. Moreover, we calculated that if such systems had the function of removing GABA within 2 msec, as it should be, a large depolarization would be brought about in GABAergic boutons, resulting ultimately in further GABA release.

  3. 3.

    These considerations together with biochemical and pharmacological experimental results seem to exclude that presynaptic uptake systems have the function of removing GABA from the synaptic cleft.

  4. 4.

    Our experimental data on the ability of a GABA-acceptive postsynaptic membrane (Deiters' neuron membrane) to transport GABA indicate that this system may have the correct characteristics for removing the neurotransmitter. This refers to both the kinetics and the electrophysiological consequences of the phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki, T., and Terzuolo, C. A. (1962). Membrane currents in spinal motoneurons associated with the action potential and synaptic activity.J. Neurophysiol. 25772–789.

    PubMed  CAS  Google Scholar 

  • Ayala, G. F., and Johnston, D. (1980). Electrophysiological studies in simple neuronal systems. InAntiepileptic Drugs: Mechanisms of Action (Glaser, G. H., Penry, J. K., and Woodbury, D. M., Eds.), Raven Press, New York, pp. 339–352.

    Google Scholar 

  • Barker, J. L., and Mather, D. A. (1981). GABA analogues activate channels of different duration on cultured mouse spinal neurones.Science 212358–361.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. L., and Segal, M. (1983). Coexistence of transmitter functions in excitable membranes of cultured CNS neurons. InCoexistence of Neuroactive Substances in Neurons (Chan Palay, V., and Palay, S. L., Eds.), John Wiley and Sons, New York, pp. 339–362.

    Google Scholar 

  • Constanti, A., Krnjevic, K., and Nistri, A. (1979). Intracellular injections of GABA have a hyperpolarizing effect on motoneurones.J. Physiol. (London)29360–61P.

    Google Scholar 

  • Coombs, J. S., Curtis, D. R., and Eccles, J. C. (1959). The electrical constants of the motoneurone membrane.J. Physiol. (London)145505–529.

    CAS  Google Scholar 

  • Cotman, C. W., Levy, W., Banker, G., and Taylor, D. (1971). An ultrastructural and chemical analysis of the effect of Triton X-100 on synaptic plasma membranes.Biochim. Biophys. Acta 249406–418.

    Article  PubMed  CAS  Google Scholar 

  • Cragg, B. G. (1967). The density of synapses and neurons in the motor and visual areas of the cerebral cortex.J. Anat. (London)101639–654.

    CAS  Google Scholar 

  • Cupello, A., and Hydén, H. (1985a). A calculation method for evaluating the time course of GABA removal from a synaptic cleft by presynaptic uptake systems.Brain Res. 342176–178.

    Article  PubMed  CAS  Google Scholar 

  • Cupello, A., and Hydén, H. (1985b). Evaluation of the electrophysiological consequences of GABA removal from the synaptic cleft by Na+ ion transport coupled neuronal uptake.Brain Res. 358364–366.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., and Eccles, J. C. (1959). The time course of excitatory and inhibitory synaptic actions.J. Physiol. (London)145529–546.

    CAS  Google Scholar 

  • Early, S. L., Michaelis, E. K., and Mertes, M. P. (1981). Pharmacological specificity of synaptosomal and synaptic membraneγ-amino-butyric acid (GABA) transport processes.Biochem. Pharmacol. 301105–1113.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., and Walberg, F. (1973). An estimation of the concentration ofγ-amino-butyric acid and glutamate decarboxylase in the inhibitory Purkinje axon terminals in the cat.Brain Res. 54115–127.

    Article  PubMed  CAS  Google Scholar 

  • Haglid, K., Hamberger, A., Hansson, H.-A., Hydén, H., Persson, L., and Rönnbäck, L. (1974). S-100 protein in synapses of the central nervous system.Nature 251532–534.

    Article  PubMed  CAS  Google Scholar 

  • Henn, F., and Hamberger, A. (1971). Glial cell function: Uptake of transmitter substances.Proc. Natl. Acad. Sci. (USA)682686–2690.

    Article  CAS  Google Scholar 

  • Hitzemann, R. J., and Loh, H. H. (1978). A comparison of GABA andβ-alanine transport and GABA membrane binding in the rat brain.J. Neurochem. 30471–477.

    Article  PubMed  CAS  Google Scholar 

  • Hydén, H., and Lange, P. W. (1981). The effect of S-100 protein on the plasma membrane function of neurons.Cell. Mol. Neurobiol. 1313–317.

    Article  PubMed  Google Scholar 

  • Hydén, H., Lange, P. W., and Larsson, S. (1980). S-100 glia regulation of GABA transport across the nerve cell membrane.J. Neurol. Sci. 45303–316.

    Article  PubMed  Google Scholar 

  • Hydén, H., Cupello, A., and Palm, A. (1984a). Inhibition by sodium valproate of the transport of GABA through the Deiters' neurone plasma membrane.Neuropharmacology 23319–321.

    Article  PubMed  Google Scholar 

  • Hydén, H., Cupello, A., and Palm, A. (1984b). Increased binding of GABA to its postsynaptic carrier sites on the plasma membrane of Deiters' neurons after a learning experiment in rats.Brain Res. 29437–45.

    Article  PubMed  Google Scholar 

  • Hydén, H., Cupello, A., and Palm, A. (1986). Asymmetric diffusion into the post-synaptic neurone. An extremely efficient mechanism for removing excess GABA from synaptic clefts on Deiters' neurone plasma membrane.Neurochem. Res. 11695–706.

    Article  PubMed  Google Scholar 

  • Iversen, L. L., and Bloom, F. E. (1972). Studies on the uptake of (3H)-GABA and (3H)-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography.Brain Res. 41131–143.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L. L., and Johnston, G. A. R. (1971). GABA uptake in rat central nervous system: Comparison of uptake in slices and homogenates and the effects of some inhibitors.J. Neurochem. 181939–1950.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L. L., and Neal, M. J. (1968). The uptake of(3H)-GABA by slices of rat cerebral cortex.J. Neurochem. 151141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, O. M., Krogsgaard-Larsen, P., and Schusboe, A. (1980). High affinity uptake of (RS)-nipecotic acid in astrocytes cultured from mouse brain. Comparison with GABA transport.J. Neurochem. 34970–977.

    Article  PubMed  CAS  Google Scholar 

  • Lester, B. R., Miller, A. L., and Peck, E. J., Jr. (1981). Differential solubilization ofγ-aminobutyric acid receptive sites from membranes of mammalian brain.J. Neurochem. 36154–164.

    Article  PubMed  CAS  Google Scholar 

  • Levi, G., and Raiteri, M. (1973). Detectability of high and low affinity uptake systems for GABA and glutamate in rat brain slices and synaptosomes.Life Sci. 1281–88.

    Article  CAS  Google Scholar 

  • Lodge, D., Johnston, G. A. R., Curtis, D. R., and Brand, S. J. (1977). Effects of the Areca nut constituents arecaidine and guvacine on the action of GABA in the cat central nervous system.Brain Res. 136513–522.

    Article  PubMed  CAS  Google Scholar 

  • Lodge, D., Curtis, D. R., and Johnston, G. A. R. (1978). Does uptake limit the action of GABA agonists in vivo? Experiments with muscimol, isoguvacine and THIP in cat spinal cord.J. Neurochem. 311525–1528.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D. L. (1976). Carrier-mediated transport and removal of GABA from synaptic regions. InGABA in Nervous System Function (Roberts, E., Chase, T. N., and Tower, D. B., Eds.), Raven Press, New York, pp. 347–386.

    Google Scholar 

  • Meier, E., Drejer, J., and Schousboe, A. (1984). GABA induces functionally active low affinity GABA receptors on cultured cerebellar granule cells.J. Neurochem. 431737–1745.

    Article  PubMed  CAS  Google Scholar 

  • Obata, K., Ito, M., Ochi, R., and Sato, N. (1967). Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of GABA on Deiters' neurons.Exp. Brain Res. 443–57.

    Article  PubMed  CAS  Google Scholar 

  • Okada, Y., and Shimada, C. (1976). Gamma-aminobutyric acid (GABA) concentration in a single neuron-localization of GABA in Deiters' neuron.Brain Res. 107658–662.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, R. W., Wong, E. H. F., Stauber, G. B., and King, R. G. (1984). Biochemical pharmacology of theγ-aminobutyric acid receptor/ionophore protein.Fed. Proc. 432773–2778.

    PubMed  CAS  Google Scholar 

  • Pastuszko, A., Wilson, D. F., and Ericinska, M. (1982). Energetics ofγ-amino-butyrate transport in rat brain synaptosomes.J. Biol. Chem. 2577514–7519.

    PubMed  CAS  Google Scholar 

  • Peterson, N. A., and Ragupathy, E. (1972). Characteristics of amino acid accumulation by synaptosomal particles isolated from rat brain.J. Neurochem. 191423–1438.

    Article  PubMed  CAS  Google Scholar 

  • Raiteri, M., Federico, R., Colletti, A., and Levi, G. (1975). Release and exchange studies relating to the synaptosomal uptake of GABA.J. Neurochem. 241243–1250.

    Article  PubMed  CAS  Google Scholar 

  • Schusboe, A. (1981). Transport and metabolism of glutamate and GABA in neurons and glial cells.Int. Rev. Neurobiol. 221–45.

    Article  Google Scholar 

  • Sellström, Å, Venema, R., and Henn, F. (1976). Functional assessment of GABA uptake or exchange by synaptosomal fractions.Nature 264652–653.

    Article  PubMed  Google Scholar 

  • Sourkes, T. L. (1981). Psychopharmacology. InBasic Neurochemistry (Siegel, G. J., Albers, R. W., Agranoff, B. W., and Katzman, R., Eds.), Little, Brown, Boston, pp. 737–758.

    Google Scholar 

  • Takeuchi, A., and Takeuchi, N. (1969). A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish.J. Physiol. (Lond.)205377–391.

    CAS  Google Scholar 

  • Thampy, K. G., and Barnes, E. M. (1984). GABA-gated chloride channels in cultured cerebral neurons.J. Biol. Chem. 2591753–1757.

    PubMed  CAS  Google Scholar 

  • Turner, A. J., and Whittle, S. R. (1983). Biochemical dissection of theγ-aminobutyrate synapse.Biochem. J. 20929–41.

    PubMed  CAS  Google Scholar 

  • Wong, E. H. F., Leeb-Lundberg, L. M. F., Terchberg, V. I., and Olsen, R. W. (1984).γ-Aminobutyric acid activation of36C1 flux in rat hippocampal slices and its potentiation by barbiturates.Brain Res. 303267–275.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cupello, A., Hydén, H. 7-Aminobutyric Acid (GABA) Removal from the Synaptic Cleft: A Postsynaptic Event?. Cell Mol Neurobiol 6, 1–16 (1986). https://doi.org/10.1007/BF00742972

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00742972

Key words

Navigation