Skip to main content
Log in

The Molecular Design of Fluorescent Sensors for Ionic Analytes

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Molecular fluorescent sensors can be synthesized by covalently linking a photoactive fragment (e.g., anthracene) to a receptor subunit displaying affinity toward the envisaged substrate. The electron transfer process is the privileged signal transduction mechanism: redox active substrates (e.g., transition metals) typically release/uptake an electron to/from the proximate photoexcited fluorophore, the recognition being signaled through fluorescence quenching; redox inactive substrates (d0 and d10 metals, H+) deactivate an existing quenching relay (e.g., a tertiary nitrogen atom close to the fluorophore) and their recognition is signaled through fluorescence enhancement. An-ionic substrates can be conveniently recognized on the basis of the metal–ligand interaction: polyamine receptors containing the photophysically inactive ZnIIion bind the carboxylate group. In the case of amino acids,\({\text{NH}}_3^ + {\text{ - CH(R) - COO}}^ -\), selectivity is improved when the receptor platform bears additional groups capable to interact specifically with the R substituent. If R is capable of transferring an electron to the nearby photoexcited fluorophore, the recognition is signaled through fluorescence quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Weller (1968) Pure Appl. Chem. 16, 115.

    Google Scholar 

  2. G. De Santis, L. Fabbrizzi, M. Licchelli, A. Poggi, and A. Taglietti (1996) Angew. Chem. Int. Ed. Engl. 35, 202.

    Google Scholar 

  3. L. Fabbrizzi and A. Poggi (1995) Chem. Soc. Rev. 197.

  4. L. Fabbrizzi, M. Licchelli, G. Rabaioli, and A. Taglietti, unpublished results.

  5. F. P. Schmidtchen and M. Berger (1997) Chem. Rev. 97, 1609.

    Google Scholar 

  6. L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti, and D. Sacchi (1994) Angew. Chem. Int. Ed. Engl. 33, 1975.

    Google Scholar 

  7. V. Balzani and F. Scandola, Supramolecular Photochemistry, Ellis Horwood, Chichester, (1991).

    Google Scholar 

  8. L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti, A. Taglietti, and D. Sacchi (1996) Chem. Eur. J. 2, 167.

    Google Scholar 

  9. A. P. de Silva and S. A. de Silva (1986) J. Chem. Soc. Chem. Commun. 1709.

  10. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice (1997) Chem. Rev. 1515.

  11. A. P. de Silva, H. Q. N. Gunaratne, and C. P. McCoy (1996) Chem. Commun. 2399.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabbrizzi, L., Licchelli, M., Parodi, L. et al. The Molecular Design of Fluorescent Sensors for Ionic Analytes. Journal of Fluorescence 8, 263–271 (1998). https://doi.org/10.1023/A:1022513918542

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022513918542

Navigation