Skip to main content
Log in

Molecular Steps of Cell Suicide: An Insight into Immune Senescence

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The cellular and molecular basis of immune senescence is unclear. A number of mechanisms have been proposed. In this issue of the Journal of Clinical Immunology, some of the mechanisms for various immunologic abnormalities in aging are presented. In this article, various molecular steps of both death receptor and mitochondrial pathways of apoptosis in general are reviewed. In particular, the role of apoptosis in T-cell immune senescence is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Powers DC, Belshe RB: Effect of age on cytotoxic T lymphocyte memory as well as serum and local antibody responses elicited by inactivated influenza virus vaccine. J Infect Dis 167:584-592, 1993.

    Google Scholar 

  2. Flurkey K, Miller RA, Harrison DE: Cellular determinants of age-related decrements in the T-cell mitogen response of B6CBAF1 mice. J Gerontol 47:B115-B120, 1992.

    Google Scholar 

  3. Kirschmann DA, Murasko DM: Splenic and inguinal lymph node T cells of aged mice respond differently to polyclonal and antigen-specific stimuli. Cell Immunol 139:426-437, 1992.

    Google Scholar 

  4. Song LJ, Nagel JE, Chrest FJ, Collins GD, Adler WH: Comparison of CD3 and CD2 activation pathways in T cells from young and elderly adults. Aging 4:307-315, 1993.

    Google Scholar 

  5. McElhaney JE, Meneilly GS, Beattie BL, Helgason CD, Lee SF, Devine RD, Bleackley RC: The effect of influenza vaccination on IL-2 production in healthy elderly: Implications for current vaccination practices. J Gerontol 47:M3-M8, 1992.

    Google Scholar 

  6. Ernst DN, Weigle WO, Noonan DJ, McQuitty DN, Hobbs MV: The age-associated increase in IFN-gamma synthesis by mouse CD8+ T cells correlates with shifts in the frequencies of cell subsets defined by membrane CD44, CD45RB, 3G11, and MEL-14 expression. J Immunol 151:575-587, 1993.

    Google Scholar 

  7. Ershler WB: Interleukin-6: a cytokine for gerontologists. J Am Geriatric Soc 41:176-181, 1993.

    Google Scholar 

  8. al-Rayes H, Pachas W, Mirza N, Ahern DJ, Geha RS, Vercelli D: IgE regulation and lymphokine patterns in aging humans. J Allergy Clin Immunol 90:630-636, 1992.

    Google Scholar 

  9. Daynes RA, Araneo BA: Natural regulators of T-cell lymphokine production in vivo. J Immunotherap 12:174-179, 1992.

    Google Scholar 

  10. Howard CJ, Sopp P, Parsons KR: L-selectin expression differentiates T cells isolated from different lymphoid tissues in cattle but does not correlate with memory. Immunology 77:228-234, 1992.

    Google Scholar 

  11. Thoman ML, Ernst DN, Hobbs MV, Weigle WO: T cell differentiation and functional maturation in aging mice. Adv Exp Med Biol 330:93-106, 1993.

    Google Scholar 

  12. Shi J, Miller RA: Differential tyrosine-specific protein phosphorylation in mouse T lymphocyte subsets. Effect of age. J Immunol 151:730-739, 1993.

    Google Scholar 

  13. Thoman ML, Weigle WO: The cellular and subcellular basis of immunosenescence. Adv Immunol 46:221-261, 1989.

    Google Scholar 

  14. Saltzman RL, Peterson PK: Immunodeficiency of the elderly. Rev Infect Dis 9:1127-1139, 1987.

    Google Scholar 

  15. Miller RA: The aging immune system: Primers and prospectus. Science 273:70-74, 1996.

    Google Scholar 

  16. Patel HR, Miller RA: Age-associated changes in mitogen-induced protein phosphorylation in murine T lymphocytes. Eur J Immunol 22:253-260, 1992.

    Google Scholar 

  17. Gupta S: Membrane signal transduction in T cell in aging humans. Ann NY Acad Sci 568:277-282, 1989.

    Google Scholar 

  18. Saini A, Sei Y: Age-related impairment of early and late events of signal transduction in mouse immune cells. Life Sci 52:1759-1765, 1993.

    Google Scholar 

  19. Engwerda CR, Handwerger BS, Fox BS: An age-related decrease in rescue from T cell death following costimulation mediated by CD28. Cell Immunol 176:141-148, 1996.

    Google Scholar 

  20. Thoman ML: Early steps in T cell development are affected by aging. Cell Immunol 178:117-123, 1997.

    Google Scholar 

  21. Ameisen JC: Programmed cell death (apoptosis) and cell survival regulation: Relevance to AIDS and cancer. AIDS 8:1197-1213, 1994.

    Google Scholar 

  22. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314-317, 1992.

    Google Scholar 

  23. Debatin K-M, Fahrig-Faissner A, Enenkel-Stoodt S, Kreuz W, Benner A, Krammer PH: High expression of Apo-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-infected children. Blood 83:3101-3103, 1994.

    Google Scholar 

  24. Fisher GH, Rosenberg FJ, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM: Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935-946, 1995.

    Google Scholar 

  25. Ashkanazi A, Dixit VM: Death receptors: Signaling and modulation. Science 281:1305-1308, 1998.

    Google Scholar 

  26. Green DR, Reed JC: Mitochondria and apoptosis. Science 281:1309-1312, 1998.

    Google Scholar 

  27. Gupta S: Molecular and biochemical pathways of apoptosis in lymphocytes from aging humans. Vaccine 1999.

  28. Gupta S: Pathways of apoptosis in lymphocyes from aging humans. In Proceedings of the 10th International Congress Immunology, GP Talwar, I Nath, NK Ganguly, KVS Rao (eds). Bologna, Italy, Monduzzi Editore, 1998, pp 353-358.

    Google Scholar 

  29. Nagata S, Goldstein P: The Fas death factor. Science 267:1449-1458, 1995.

    Google Scholar 

  30. Van Parijs L, Abbas AK: Role of Fas-mediated cell death in the regulation of immune responses. Curr Opin Immunol 8:355-361, 1996.

    Google Scholar 

  31. Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S: Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas ligand. Cell 76:969-976, 1994.

    Google Scholar 

  32. Bettinardi A, Brugnoni D, Quiros-Roldan E, Malagoli A, La Grutta S, Correra A, Notarangelo LD: Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: A molecular and immunological analysis. Blood 89:902-909, 1997.

    Google Scholar 

  33. Cheng J, Liu C, Koopman WJ, Mountz JD: Characterization of human Fas gene. Exon/intron and promoter region. J Immunol 154:1239-1245, 1995.

    Google Scholar 

  34. Cascino I, Fiucci G, Papoff G, Ruberti G: Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternate splicing. J Immunol 154:2706-2713, 1995.

    Google Scholar 

  35. Hughes DPM, Crispe IN: A naturally occurring soluble isoform of murine Fas generated by alternating splicing. J Exp Med 182:1395-1401, 1995.

    Google Scholar 

  36. Suda T, Takahashi T, Goldstein P, Nagata S: Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75:1169-1178, 1993.

    Google Scholar 

  37. Tanaka M, Suda T, Haze K, Nakamura N, Sato K, Kimura F, Motoyoshi K, Mizuki M, Tagawa S, Ohga S, Hatake K, Drummond AH, Nagata S: Fas ligand in human serum. Nature Med 2:317-322, 1996.

    Google Scholar 

  38. Pinkoski MJ, Green DR: Fas ligand, death gene. Cell Death Differen 6:1174-1181, 1999.

    Google Scholar 

  39. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME: Two CD95 (Apo-1/Fas) signaling pathways. EMBO J 17:1675-1687, 1998.

    Google Scholar 

  40. Hu S, Vincenz C, Ni J, Gentz R, Dixit VM: I-Flice, a novel inhibitor of tumor necrosis factor receptor-1 and CD95-induced apoptosis. J Biol Chem 272:17255-17257, 1997.

    Google Scholar 

  41. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer J-L, Schriter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J: Inhibition of death receptor signals by cellular FLIP. Nature 388:190-195, 1997.

    Google Scholar 

  42. Hernandez-Caselles T, Stutman O: Immune functions of tumor necrosis factor. J Immunol 151:3999-4012, 1993.

    Google Scholar 

  43. Rothe J, Gehr G, Loetcher H, Lesslauer W: Tumor necrosis factor receptor—structure and function. Immunol Res 11:81-90, 1992.

    Google Scholar 

  44. Tartaglia LA, Goeddel DV: Two TNF receptors. Immunol Today 13:151-153, 1992.

    Google Scholar 

  45. Venabeele P, Declercq W, Beyaert R, Fiers W: Two tumor necrosis factor receptors: Structure and function. Trends Cell Biol 5:392-399, 1995.

    Google Scholar 

  46. Heller RA, Kronke M: Tumor necrosis factor-mediated signaling pathways. J Cell Biol 126:5-9, 1994.

    Google Scholar 

  47. Thoma B, Grell M, Pfizenmaier K, Scheurich P: Identification of a 60-kDa tumor necrosis factor (TNF) receptor as the major signal transducing component in TNF responses. J Exp Med 172:1019-1023, 1990.

    Google Scholar 

  48. Ware CF, Crowe PD, Van Arsdale TL, Andrews JL, Grayson MH, Jerzy R, Smith CA, Goodwin RG: Tumor necrosis factor (TNF) receptor expression in T lymphocytes: Differential regulation of the type 1 receptor during activation of resting and effector T cells. J Immunol 147:4229-4238, 1991.

    Google Scholar 

  49. Wallach D: Suicide by order: Some open questions about the cell-killing activities of the TNF ligand and receptor families. Cytokin Growth Factor Rev 7:211-221, 1996.

    Google Scholar 

  50. Rath PC, Aggarwal BB: TNF-induced signaling in apoptosis. J Clin Immunol 19:350-364, 1999.

    Google Scholar 

  51. Wallach D, Boldin M, Varfolomeev E, Beyaert R, Vandenabeele P, Fiers W: Cell death induction by receptors of the TNF family: Towards a molecular understanding. FEBS Lett 410:96-106, 1997.

    Google Scholar 

  52. Darnay BG, Aggarwal BB: Early events in TNF signaling: a story of associations and dissociations. J Leuk Biol 61:559-566, 1997.

    Google Scholar 

  53. Yuan J: Transducing signals of life and death. Curr Opin Cell Biol 9:247-251, 1997.

    Google Scholar 

  54. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV: The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83:1243-1252, 1995.

    Google Scholar 

  55. Hsu H, Shu HB, Pan MG, Goeddel DV: TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299-308, 1996.

    Google Scholar 

  56. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV: TNFdependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4:387-396, 1996.

    Google Scholar 

  57. Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM: The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271:16443-16446, 1996.

    Google Scholar 

  58. Malinin NL, Boldin MP, Kovalenko AV, Wallach D: MAP3Krelated kinase involved in NF-kappa-B induction by TNF, CD95 and IL-1. Nature 385:540-544, 1997.

    Google Scholar 

  59. Liu ZG, Hsu H, Goeddel DV, Karin M: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappa-B activation prevents cell death. Cell 87:565-576, 1996.

    Google Scholar 

  60. Baeuerle PA, Baltimore D: I-кb: A specific inhibitor of NF-кB transcription factor. Cell 242:540-546, 1988.

    Google Scholar 

  61. Baldwin AS Jr: Function and activation of NF-кB in the immune system. Annu Rev Immunol 12:141-179, 1994.

    Google Scholar 

  62. Beg AA, Finco TS, Nantermet PV, Baldwin AS Jr: The NF-kappa B proteins: New discoveries and insights. Mol Cell Biol 13:3301-3310, 1993.

    Google Scholar 

  63. Sun SC, Ganchi PA, Ballard DW, Greene WC: NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 259:1912-1915, 1993.

    Google Scholar 

  64. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA: Rapid proteolysis of I kappa-alpha is necessary for activation of transcription factor NF-kappa B. Nature 365:182-185, 1993.

    Google Scholar 

  65. Chouaib S, Robinet E, Zyad A, Branellec D: Tumor necrosis factor: pleiotropic cytokine. Bull Cancer 79:935-949, 1992.

    Google Scholar 

  66. Aggarwal BB, Natarajan K: Tumor necrosis factors: Developments during the last decade. Eur Cytokine Netw 7:93-124, 1996.

    Google Scholar 

  67. Beg AA, Baltimore D: An essential role for NF-кB in preventing TNF-α-induced cell death. Science 274:782-784, 1996.

    Google Scholar 

  68. Wang C-Y, Mayo MW, Baldwin AS: TNF-and cancer therapyinduced apoptosis: Potentiation by inhibition of NF-кB. Science 274:784-787, 1996.

    Google Scholar 

  69. Antwerp DJV, Martin SJ, Kafri T, Green DR, Verma IM: Suppression of TNF-α-induced apoptosis by NF-кB. Science 274:787-789, 1996.

    Google Scholar 

  70. Jiang Y, Woronicz JD, Liu W, Goeddel DV: Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283:543-548, 1999.

    Google Scholar 

  71. Deveraux QL, Stennicke HR, Salvesen GS, Reed JC: Endogenous inhibitors of caspases. J Clin Immunol 19:388-398, 1999.

    Google Scholar 

  72. Cryns V, Yuan J: Proteases to die for. Genes Dev 12:1551-1570, 1998.

    Google Scholar 

  73. Salvesen GS, Dixit VM: Caspases: Intracellular signaling by proteolysis. Cell 91:443-446, 1997.

    Google Scholar 

  74. Reed JC: Cytochrome c: Can't live with, it can't live without it. Cell 91:559-562, 1997.

    Google Scholar 

  75. Hasegawa J, Kamada S, Kamiike W, Shimizu S, Imazu T, Matsuda H, Tsujimoto Y: Involvement of CPP32/Yama(-like) proteases in Fas-mediated apoptosis. Cancer Res 56:1713-1718, 1996.

    Google Scholar 

  76. Ubeda M, Habener JF: The large subunit of the DNA replication complex C (DSEB/RF-C140) cleaved and inactivated by caspase-3 (CPP32/YAMA) during Fas-induced apoptosis. J Biol Chem 272:19562-19568, 1997.

    Google Scholar 

  77. Fernandes-Alnemri T, Litwack G, Alnmeri ES: CPP32, a novel apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta converting enzyme. J Biol Chem 269:30761-30764, 1994.

    Google Scholar 

  78. Xue D, Horvitz HR: Inhibition of Caenorhabiditis elegans cell death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377:248-251, 1995.

    Google Scholar 

  79. Nicholson WD, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulsom ME, Yamin T-T, Yu VL, Miller DK: Identification and inhibition of ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37-43, 1995.

    Google Scholar 

  80. Tewari M, Quan L, O'Rourke K, Desnoyers S, Zheng Z, Beidler DR, Poirier GG, Salvesen G, Dixit VM: Yama/CPP32 beta, a mammalian homolog of CED-3, is a Crm-A-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 81:801-809, 1995.

    Google Scholar 

  81. Takahashi A, Alnemri ES, Lazebnik YA, Fernandes-Alnemri T, Litwack G, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC: Cleavage of lamin A by Mch2 alpha but not CPP32: Multiple interleukin 1 beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc Natl Acad Sci USA 93:8395-8400, 1996.

    Google Scholar 

  82. Mandal M, Maggirwar SB, Sharma N, Kaufmann SH, Sun SC, Kumar R: Bcl-2 prevents CD95 (Fas/APO-1)-induced degradation of lamin B and poly(ADP-ribose) polymerase and restores the NF-kappa-B signaling pathway. J Biol Chem 271:30354-30359, 1996.

    Google Scholar 

  83. McConnell KR, Dynan WS, Hardin JA: The DNA-dependent protein kinase catalytic subunit (p460) is cleaved during Fasmediated apoptosis in Jurkat cells. J Immunol 158:2083-2089, 1997.

    Google Scholar 

  84. Datta R, Kojima H, Yoshida K, Kufe D: Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis. J Biol Chem 272:20317-20320, 1997.

    Google Scholar 

  85. Sakahira H, Enari M, Nagata S: Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96-99, 1998.

    Google Scholar 

  86. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S: A caspase-activated DNAse that degrades DNA during apoptosis and its inhibitor ICAD. Nature 391:43-50, 1998.

    Google Scholar 

  87. Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S: The Ced-4 homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 398:777-785, 1999.

    Google Scholar 

  88. Adams JM, Corey SL: The Bcl-2 protein family: Arbiters of cell survival. Science 281:1322-1326, 1998.

    Google Scholar 

  89. Nunez G, Clarke MF: The Bcl-2 family of proteins: regulators of cell death and survival. Trends Cell Biol 4:399-403, 1994.

    Google Scholar 

  90. Waterhouse NJ, Green DR: Mitochondria and apoptosis: HQ or high-security prison. J Clin Immunol 19:378-387, 1999.

    Google Scholar 

  91. Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334-336, 1990.

    Google Scholar 

  92. Reed JC: Regulation of apoptosis by Bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 7:541-546, 1995.

    Google Scholar 

  93. Jaattela M, Benedict M, Tewari M, Shyaman JA, Dixit VM: Bcl-x and Bcl-2 inhibit TNF-and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells. Oncogene 10:2297-2305, 1995.

    Google Scholar 

  94. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB: Bcl-x, a Bcl-2 related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597-608, 1993.

    Google Scholar 

  95. Yin XM, Oltvai ZN, Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321-323, 1994.

    Google Scholar 

  96. Oltvai ZN, Korsmeyer SJ: Checkpoints of dueling dimers foil death wishes. Cell 79:189-192, 1994.

    Google Scholar 

  97. Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609-619, 1993.

    Google Scholar 

  98. Osborne BA: Induction of genes during apoptosis: Examples from the immune system. Semin Cancer Biol 6:27-33, 1995.

    Google Scholar 

  99. Greenhalf W, Stephan C, Chaudhuri B: Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett 380:169-175, 1996.

    Google Scholar 

  100. Newmeyer DD, Farschon DM, Reed JC: Cell-free apoptosis in Xenopus egg extracts: Inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79:353-364, 1994.

    Google Scholar 

  101. Papa S, Skulachev VP: Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174:305-319, 1997.

    Google Scholar 

  102. Petit PX, Zamzami N Vayssiere JL, Mignotte B, Kroemer G, Castedo M: Implication of mitochondria in apoptosis. Mol Cell Biochem 174:185-188, 1997.

    Google Scholar 

  103. Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, Fassy F, Reed JC, Kroemer G: The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95-and ceramide-induced apoptosis. J Exp Med 186:25-37, 1997.

    Google Scholar 

  104. Weaver VM, Lach B, Walker PR, Sikorska M: Role of proteolysis in apoptosis: Involvement of serine proteases in internucleosomal DNA fragmentation in immature thymocytes. Biochem Cell Biol 71:488-500, 1993.

    Google Scholar 

  105. Marchetti P, Hirsch T, Zamzami N, Castedo M, Decaudin D, Susin SA, Masse B, Kroemer G: Mitochondrial permeability transition triggers lymphocyte apoptosis. J Immunol 157:4830-4836, 1996.

    Google Scholar 

  106. Kroemer G: The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Med 3:614-620, 1997.

    Google Scholar 

  107. Hennet Y, Richter C, Peterhans E: Tumor necrosis factor-α induces superoxide anion production in mitochondria of L929 cells. Biochem J 289:587-592, 1993.

    Google Scholar 

  108. Vayssiere JL, Petit PX, Risler Y, Mignotte B: Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in SV40 conditional cell lines. Proc Natl Acad Sci USA 91:11752-11756, 1994.

    Google Scholar 

  109. Liu X, Kim CM, Yang J, Jemmorson R, Wang X: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86:147-157, 1996.

    Google Scholar 

  110. Yang J, Liu X, Bhalla K, Kim CN, Ibardo AM, Cai J, Peng TI, Jones DP, Wang X: Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129-1132, 1997.

    Google Scholar 

  111. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275:1132-1136, 1997.

    Google Scholar 

  112. Pastorino JC, Chen ST, Tafani M, Snyder JW, Faber JL: The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273:7770-7775, 1998.

    Google Scholar 

  113. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC: Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95:4997-5002, 1998.

    Google Scholar 

  114. Li H, Zhu H, Xu C-J, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491-501, 1998.

    Google Scholar 

  115. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481-490, 1998.

    Google Scholar 

  116. Yin X-M, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ: Bid-deficient mice are resistant to Fasinduced hepatocellular apoptosis. Nature 400:886-891, 1999.

    Google Scholar 

  117. Devereaux QL, Takahashi R, Salvesen GS, Reed JC: X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300-304, 1997.

    Google Scholar 

  118. Wang C-Y, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS: NF-кB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680-1683, 1998.

    Google Scholar 

  119. Chrest FJ, Buchholz MA, Kim YH, Kwon T-K, Nordin AA: Anti-CD3-induced apoptosis in T cells from young and old mice. Cytometry 20:33-42, 1995.

    Google Scholar 

  120. Zhou T, Edwards CK 3rd, Mountz JD: Prevention of age-related T cell apoptosis defect in CD2-fas-transgenic mice. J Exp Med 182:129-137, 1995.

    Google Scholar 

  121. Phelouzat MA, Arbogast A, Laforge T, Quadri RA, Proust JJ: Excessive apoptosis of mature T lymphocytes is a characteristic feature of human immune senescence. Mech Ageing Develop 88:25-38, 1996.

    Google Scholar 

  122. Phelouzat MA, Laforge T, Arbogast A, Quadri RA, Boutet S, Proust JJ: Susceptibility to apoptosis of T lymphocytes from elderly humans is associated with increased in vivo expression of functional Fas receptors. Mech Ageing Dev 96:35-46, 1997.

    Google Scholar 

  123. Herndon FJ, Hsu HC, Mountz JD: Increased apoptosis of CD45RO-T cells with aging. Mech Ageing Dev 94:123-134, 1997.

    Google Scholar 

  124. Lechner H, Amort M, Steger MM, Maczek C, Grubeck-Loebenstein B: Regulation of CD95 (Apo-1) expression and the induction of apoptosis in human T cells: Changes in old age. Int Arch Allergy Immunol 110:238-243, 1996.

    Google Scholar 

  125. Aggarwal S, Gupta S: Increased apoptosis of T cell subsets in aging humans: Altered expression of Fas (CD95), Bcl-2 and Bax. J Immunol 160:1627-1637, 1998.

    Google Scholar 

  126. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ: Induction of apoptosis in mature T cells by tumor necrosis factor. Nature 377:348-351, 1995.

    Google Scholar 

  127. Miyawaki T, Uehera T, Nibu R, Tsuji T, Yachie A, Yonehara Y, Taniguchi N: Differential expression of apoptosis related Fas antigen on lymphocyte subpopulations in human peripheral blood. J Immunol 149:3753-3758, 1992.

    Google Scholar 

  128. Timm JA, Thoman ML: Maturation of CD4+ lymphocytes in the aged microenvironment results in a memory-enriched population. J Immunol 162:711-717, 1999.

    Google Scholar 

  129. Shinohara S, Sawada T, Nishioka Y, Tohma S, Kisaki T, Inou T, Ando K, Ikeda M, Fuji H, Ito K: Differential expression of Fas antigen and Bcl-2 protein on CD4+ T cells, CD8+ T cells and monocytes. Cell Immunol 163:303-308.

  130. Nagata S: Apoptosis regulated by a death factor and its receptor: Fas ligand and Fas. Phil Trans R Soc London 345:281-287, 1994.

    Google Scholar 

  131. Aggarwal S, Gupta S: Increased activity of caspase-3 and caspase-8 during Fas-mediated apoptosis in lymphocytes from ageing humans. Clin Exp Immunol 117:285-290, 1999.

    Google Scholar 

  132. Stosic-Grujicic SS, Lukic ML: The production of TNF, IL-1 and IL-6 in cutaneous tissues during maturation and aging. Adv Exp Med Biol 371:411-414, 1995.

    Google Scholar 

  133. Han D, Hosokawa T, Aoike A, Kawai K: Higher production of TNF elicited by a biological response modifier in aging mice. Jpn J Hygiene 48:852-858, 1993.

    Google Scholar 

  134. Aggarwal S, Gollapudi S, Gupta S: Increased TNF-α-induced apoptosis in lymphocytes from aged humans. Changes in the expression of TNF-α receptors and activation of caspases. J Immunol 162:2154-2163, 1999.

    Google Scholar 

  135. Iwai K, Miyawaki T, Takizawa T, Konno A, Ohta K, Yachi A, Seki H, Taniguchi N: Differential expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes and neutrophils. Blood 84:1201-1208, 1994.

    Google Scholar 

  136. Yoshino T, Kondo E, Cao L, Takahashi K, Hayashi K, Nomura S, Akagi T: Inverse expression of Bcl-2 protein and Fas antigen in lymphoblasts in peripheral nodes and activated peripheral blood T and B lymphocytes. Blood 83:1856-1861, 1994.

    Google Scholar 

  137. Strasser A, Harris AW, Huang DCS, Krammer PH, Cory S: Bcl-2 and Fas/Apo-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 14:6136-6147, 1996.

    Google Scholar 

  138. Debatin KM, Krammer: PH Resistance to APO-1 (CD95)-induced apoptosis in T-ALL is determined by a Bcl-2 independent anti-apoptotic program. Leukemia 9:815-820, 1995.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S. Molecular Steps of Cell Suicide: An Insight into Immune Senescence. J Clin Immunol 20, 229–239 (2000). https://doi.org/10.1023/A:1006653917314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006653917314

Navigation