Skip to main content
Log in

Diet-related differences in the cuticular lipids ofManduca sexta larvae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Cuticular lipid components were examined from fourth-instar larvae ofManduca sexta reared on artificial diet or growing plants. The plants used were potato, tobacco, and tomato grown in pots in a greenhouse. Twenty-eight components made up the bulk of the lipids, but there were significant differences in the proportions of them present in insects reared on the different diets. In the case of some insect cuticular lipid components, there was an obvious relationship with the surface components of the plant, but generally this relationship was weak. Nonetheless, the differences may have ecological relevance, as indicated by preliminary work on predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, J.E., Sukkestad, D.R., Woo, S.M., andNelson, D.R. 1978. Cuticular hydrocarbons ofTribolium castaneum: effects of the food additive tricalcium phosphate.Insect Biochem. 8:159–167.

    Google Scholar 

  • Bernays, E.A., Blaney, W.M., andChapman, R.F. 1975. The problems of perception of leaf-surface chemicals by locust contact chemoreceptors, pp. 227–230,in D.A. Denton and J.P. Coghlan (eds.). Olfaction and Taste, Vol. V. Academic Press, New York.

    Google Scholar 

  • Bernays, E.A., Blaney, W.M., Chapman, R.F. andCook, A.G. 1976. The ability ofLocusta migratoria L. to perceive plant surface waxes, pp. 35–40,in T. Jermy (ed.). The Host-Plant in Relation to Insect Behavior and Reproduction, Vol. 16. Plenum Press, New York.

    Google Scholar 

  • Blomquist, G.J., andJackson, L.L. 1973. Incorporation of labelled dietaryn-alkanes into cuticular lipids of the grasshopperMelanoplus sanguinipes.J. Insect Physiol. 19:1639–1647.

    Google Scholar 

  • Blomquist, G.J., andDillwith, J.W. 1985. Cuticular lipids, pp. 117–154,in G.A. Kerkut and L.I. Gilbert (eds.) Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 3. Integument, Respiration and Circulation. Pergamon, Oxford, U.K.

    Google Scholar 

  • Blomquist, G.J., Soliday, C.L., Byers, B.A., Brakke, J.W., andJackson, L.L. 1972. Cuticular lipids of insects. V. Cuticular wax esters of secondary alcohols from the grasshoppersMelanoplus packardii andMelanoplus sanguinipes.Lipids 7:356–362.

    Google Scholar 

  • Blomquist, G.J., Blailock, T.T., Scheetz, R.W., andJackson, L.L. 1976. Cuticular lipids of insects. VII. Cuticular hydrocarbons of the cricketsAcheta domesticus, Gryllus pennsylvanicus and Nemobius fasciatus.Comp. Biochem. Physiol. 54B:381–386.

    Google Scholar 

  • Blomquist, G.J., Nelson, D.R., andDe Renobales, M. 1987. Chemistry, biochemistry, and physiology of insect articular lipids.Arch. Insect Biochem. Physiol. 6:227–265.

    Google Scholar 

  • Bordner, J., Danehower, D.A., Thacker, J.D., Kennedy, G.G., Stinner, R.E., andWilson, K.G. 1983. Chemical basis for host plant selection, pp. 245–264,in P.A. Hedin (ed.). Plant Resistance to Insects. ACS Symposium, Las Vegas. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Bowers, W.S., andThompson, M.J. 1965. Identification of the major constituents of the crystal-line powder covering the larval cuticle ofSamia cynthia ricini (Jones).J. Insect Physiol. 11:1003–1011.

    Google Scholar 

  • Brown, J.J. 1987. Toxicity of herbicides thiobencarb and endothall when fed to laboratory-rearedTrichoplusia ni (Lepidoptera: Noctuidae).Pestic. Kochern. Physiol. 27:97–100.

    Google Scholar 

  • Buckner, J.S., Nelson, D.R., Hakk, H., andPomonis, J.G. 1984. Long chain oxoaldehydes and oxoalcohols from esters as major constituents of the surface lipids ofManduca sexta pupae in diapause.J. Biol. Chem. 259:8452–8460.

    PubMed  Google Scholar 

  • Bursell, E., andClements, A.N. 1967. The cuticular lipids of the larva ofTenebrio molitor L. (Coleoptera).J. Insect Physiol. 13:1671–1678.

    Google Scholar 

  • Cassagne, C., andLessire, R. 1975. Studies on alkane biosynthesis in epidermis ofAlliumporrum L. leaves. IV. Wax movement into and out of the epidermal cells.Plant Sei. Lett. 5:261–268.

    Google Scholar 

  • Chang, S.Y., andGrunwald, C. 1980. Structural organization of tobacco leaf polar cuticular lipids.Bot. Gaz. 141:360–365.

    Google Scholar 

  • Chapman, R.F. 1977. The role of the leaf surface in food selection by acridids and other insects.Colloq. Int. C.N.R.S. 265:133–149.

    Google Scholar 

  • Cutler, H.G., Severson, R.F., Cole, P.D., Jackson, D.M., andJohnson, A.W. 1986. Secondary metabolites from higher plants. Their possible role as biological control agents, pp. 178–196,in M.B. Green and P.A. Hedin (eds.). Natural Resistance of Plants to Pests: Roles of Allelochemicals. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Danehower, D.A., andBordner, J. 1984. Cuticular wax ofEpilachna varivestis.Insect Biochem. 14:671–676.

    Google Scholar 

  • Espelie, K.E., Köller, W., andKolattukudy, P.E. 1983. 9,16-Dihydroxy-10-oxo-hexadecanoic acid, a novel component inCitrus cutin.Chem. Phys. Lipids 32:13–26.

    Google Scholar 

  • Hendry, L.B., Wichmann, J.K., Hindenlang, D.M., Weaver, K.M., andKorzeniowski, S.H. 1976. Plants—the origins of kairomones utilized by parasitoids of phytophagous insects?J. Chem. Ecol. 2:271–283.

    Google Scholar 

  • Holloway, P.J., Jeffree, C.E., andBaker, E.A. 1976. Structural determination of secondary alcohols from plant epicuticular waxes.Phytochemistry 15:1768–1770.

    Google Scholar 

  • Jackson, L.L., Armold, M.T., andRegnier, F.E. 1974. Cuticular lipids of adult fleshflies,Sarcophaga bullata.Insect Biochem. 16:433–439.

    Google Scholar 

  • Jeffree, C.E., Baker, E.A., andHolloway, P.J. 1975. Ultrastructure and recrystallization of plant epicuticular waxes.New Phytol. 75:539–549.

    Google Scholar 

  • Jones, C.G., Young, A.M., Jones, T.H., andBlum, M.S. 1982. Chemistry and possible roles of cuticular alcohols of the larval Atlas moth.Comp. Biochem. Physiol. 73B:797–801.

    Google Scholar 

  • Lockey, K.H. 1988. Lipids of the insect cuticle: origin, composition and function.Comp. Biochem. Physiol. 89B:595–645.

    Google Scholar 

  • Maloney, P.J., Albert, P.J., andTulloch, A.P. 1988. Influence of epicuticular waxes from white spruce and balsam fir on feeding behavior of the eastern spruce budworm.J. Insect Behav. 1:197–208.

    Google Scholar 

  • Nelson, D.R. 1978. Long-chain methyl-branched hydrocarbons: Occurrence, biosynthesis and function.Adv. Insect Physiol. 13:1–33.

    Google Scholar 

  • Nelson, D.R., andSukkestad, D.R. 1970. Normal and branched aliphatic hydrocarbons from the eggs of the tobacco hornworm.Biochemistry 9:4601–4611.

    PubMed  Google Scholar 

  • Nelson, D.R., Sukkestad, D.R., andTerranova, A.C. 1971. Hydrocarbon composition of the integument, fat body, hemolymph and diet of the tobacco hornworm.Life Sei. 10:411–419.

    Google Scholar 

  • Nelson, D.R., Sukkestad, D.R., andZaylskie, R.G. 1972. Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm.J. Lipid. Res. 13:413–421.

    PubMed  Google Scholar 

  • Percy, J.E., Blomquist, G.J., andMacDonald, J.A. 1983. The wax-secreting glands ofEriocampa ovata L. (Hymenoptera: Tenthredinidae): Ultrastructural observations and chemical composition of the wax.Can. J. Zool. 61:1797–1804.

    Google Scholar 

  • Richter, I., andKrain, H. 1980. Cuticular lipid constituents of cabbage seedpod weevils and host plant oviposition sites as potential pheromones.Lipids 15:580–586.

    Google Scholar 

  • Severson, R.F., Arrendale, R.F., Chortyk, O.T., Johnson, A.W., Jackson, D.M., Gwynn, G.R., Chaplin, J.F., andStephenson, M.G. 1984. Quantitation of the major cuticular components from green leaf of different tobacco types.J. Agric. Food Chem. 32:566–570.

    Google Scholar 

  • Soliday, C.L., Blomquist, G.J., andJackson, L.L. 1974. Cuticular lipids of insects. VI. Cuticular lipids of the grasshoppersMelanoplus sanguinipes andMelanoplus packardii.J. Lipid Res. 15:399–405.

    PubMed  Google Scholar 

  • Springer, J.P., Clardy, J., Cox, R.H., Cutler, H.G., andCole, R.J. 1975. The structure of a new type of plant growth inhibitor extracted from immature tobacco leaves.Tetrahedron Lett, 32:2737–2740.

    Google Scholar 

  • Varela, L.G., andBernays, E.A. 1988. Behavior of newly hatched potato tuber moth larvae,Phthorimaea operculella Zell. (Lepidoptera: Gelechiidae), in relation to their host plants.J. Insect Behav. 1:261–275.

    Google Scholar 

  • Woodhead, S. 1983. Surface chemistry ofSorghum bicolor and its importance in feeding byLocusta migratoria.Physiol. Entomol. 8:345–352.

    Google Scholar 

  • Woodhead, S., andChapman, R.F. 1986. Insect behaviour and the chemistry of plant surface waxes, pp. 123–135,in B.E. Juniper and T.R.E. Southwood (eds.). Insects and the Plant Surface. Edward Arnold, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espelie, K.E., Bernays, E.A. Diet-related differences in the cuticular lipids ofManduca sexta larvae. J Chem Ecol 15, 2003–2017 (1989). https://doi.org/10.1007/BF01207433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01207433

Key words

Navigation