Skip to main content
Log in

Techniques for measuring the alpha-particle distribution in magnetically confined plasmas

  • Contributed Papers
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Methods are proposed for measuring the alpha-particle distribution in magnetically confined fusion plasmas using neutral-atom doping beams, ultraviolet spectroscopy, and neutral particle detectors. In the first method, single charge exchange reactions, A0+He2+→A+ +(He+)*, are used to populate then=2 andn=3 levels of He+. The ultraviolet photons from the decaying excited states are Doppler shifted by 5–10 Å from those produced by the thermalized alpha-particle “ash.” In the second method, double charge exchange reactions, A0+He2+→A2++He0, enable fast neutralized alpha particles to escape from the plasma and be detected by neutral particle analyzers. These methods are distinguished from similar techniques of observing plasma impurities in that, in principle, they allow a determination of the dependence of the distribution function on energy and pitch angle, as well as on spatial position. Detector configurations are analyzed, count rates are estimated, and the detector feasibility is discussed. A preliminary analysis of the feasibility of the required neutral beams is presented, and exploratory experiments on existing devices are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Goldston,Nucl. Fusion 15:651 (1975).

    Google Scholar 

  2. Ya. I. Kolesnichenko,Nucl. Fusion 20:727 (1980).

    Google Scholar 

  3. S. W. Seiler and H. W. Hendel,Bull. Am. Phys. Soc. 23:881 (1978).

    Google Scholar 

  4. J. H. Foote,Nucl. Fusion 19:1215 (1979).

    Google Scholar 

  5. A. M. Kudryatsev and A. F. Sorokin,J.E.T.P. Lett. 18:286 (1973).

    Google Scholar 

  6. V. V. Afrosimov, M. P. Petrov, V. A. Sadovnikov, and A. F. Ioffe,J.E.T.P. Lett. 18:300 (1973).

    Google Scholar 

  7. V. V. Afrosimov, Y. S. Gordeev, A. N. Zinoviev, and A. A. Korotkov,J.E.T.P. Lett. 28:500 (1978).

    Google Scholar 

  8. R. C. Isler,Phys. Rev. Lett. 38:1359 (1977).

    Google Scholar 

  9. R. P. Drake and H. W. Moos,Bull. Am. Phys. Soc. 24:767 (1979).

    Google Scholar 

  10. M. Brusati, S. L. Davis, H. P. Eubank, P. Moriette, R. R. Smith, and R. J. Goldston,Bull. Am. Phys. Soc. 22:1076 (1977).

    Google Scholar 

  11. K. H. Burrell,Bull. Am. Phys. Soc. 24:767 (1979).

    Google Scholar 

  12. S. Suckewver, private communication (1979).

  13. K. Okuno, Charge changing cross sections for heavy particle collisions in the energy range from 0.1 eV to 10 MeV: I. Incidence of He, Li, Be, B, and their ions, Nagoya University report IPPJ-AM-9 (December 1978).

  14. E. J. Shipsey, L. T. Redmon, J. C. Browne, and R. E. Olson,Phys. Rev. A18:1961 (1978).

    Google Scholar 

  15. R. L. Freeman and E. M. Jones, Atomic collision processes in plasma physics experiments, Culham Lab. report CLM-R 137 (1974).

  16. J. G. Cordey, and W. G. F. Core,Phys. Fluids 17:1626 (1974).

    Google Scholar 

  17. G. Lehner,Z. Phys. 232:172 (1970).

    Google Scholar 

  18. H. H. Towner, I.E.E.E. 1977 Intl. Conf. on Plasma Science,I.E.E.E. Conf. Records—Abstracts (1977), p. 92.

  19. J. E. Bayfield and G. A. Khayrallah,Phys. Rev. A11:920 (1975).

    Google Scholar 

  20. A. Jacobs,J. Quant. Spec. Radial. Transfer 12:243 (1972).

    Google Scholar 

  21. C. W. Allen,Astrophysical Quantities (Athlone Press, London, 1955, pp. 64–68.

    Google Scholar 

  22. S. Medley, private communication.

  23. C. F. Barnett, J. A. Ray, E. Ricci, M. I. Wilder, E. W. McDaniel, E. W. Thomas, and H. B. Gilbody, Atomic Data for Controlled Fusion Research, Oak Ridge Natl. Lab. report ORNL-5206 (February 1977).

  24. J. B. Marion, and F. C. Young,Nuclear Reaction Analysis (American Elsevier, New York, 1968).

    Google Scholar 

  25. N. V. Fedorenko,Soviet Phys.-Tech. Phys. 15:1947 (1971).

    Google Scholar 

  26. A. C. Riviere, and D. R. Sweetman,Bull. Am. Phys. Soc. 15:1440 (1970).

    Google Scholar 

  27. G. I. Dimov, and G. V. Roslykov,Nucl. Fusion 15:551 (1975).

    Google Scholar 

  28. K. H. Berkner, T. J. Morgan, R. V. Pyle, and J. W. Stearns,Phys. Rev. A8:2870 (1973).

    Google Scholar 

  29. J. W. Stearns, K. H. Berkner, and R. V. Pyle, Neutral beam design options, Lawrence Berkeley Lab. report LBL-4492 (1976).

  30. J. W. Stearns, K. H. Berkner, R. V. Pyle, B. P. Briegleb, and M. L. Warren,Phys. Rev. A4:1960 (1971).

    Google Scholar 

  31. G. Ryding, A. B. Wittkower, and P. H. Rose,Phys. Rev. 174:149 (1968).

    Google Scholar 

  32. S. K. Allison, J. Cuevas, and M. Garcia-Munoz,Phys. Rev. 120:1266 (1960).

    Google Scholar 

  33. K. Prelec,Proc. Symp. Production and Neutralization of Negative Hydrogen Ions and Beams, Brookhaven Natl. Lab. report BNL 50729 (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Post, D.E., Mikkelsen, D.R., Hulse, R.A. et al. Techniques for measuring the alpha-particle distribution in magnetically confined plasmas. J Fusion Energ 1, 129–142 (1981). https://doi.org/10.1007/BF01050656

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050656

Key words

Navigation