Skip to main content
Log in

A Review of Confinement Requirements for Advanced Fuels

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The energy confinement requirements for burning D-3He, D-D, or P-11B are reviewed, with particular attention to the effects of helium ash accumulation. It is concluded that the DT cycle will lead to the more compact and economic fusion power reactor. The substantially less demanding requirements for ignition in DT (the ne τE T required for ignition in DT is smaller than that of the nearest advanced fuel, D-3He, by a factor of 50) will allow ignition, or significant fusion gain, in a smaller device; while the higher fusion power density (the fusion power density in DT is higher than that of D-3He by a factor of 100 at the same plasma pressure) allows for a more compact and economic device at fixed fusion power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. For an early survey of advanced fuel cycles, see J. Rand McNally, Jr, Nuclear Fusion, 11, 187 (1971).

    Google Scholar 

  2. See, for example, R. Najmabadi et al., The ARIES-III D-3He Tokamak Reactor Study. UCLA-PPG-1386, UCLA (Dec. 1991).

  3. R. O. Pepin et al., Science, 167, 550 (1970).

    Google Scholar 

  4. L. J. Wittenberg, J. F. Santariu, and G. L. Kulcinski, Fusion Technology, 10, 167 (1986).

    Google Scholar 

  5. W. Kernbichler, R. Feldbacher, and M. Heindler, Plasma Physics and Controlled Nuclear Fusion Research 1984, IAEA, Vienna (1985), 3, 429.

    Google Scholar 

  6. See, for example, J. M. Dawson, in Fusion (Vol. 1, Part B), E. Teller (ed.). (Academic Press, New York, 1981), p. 453.

    Google Scholar 

  7. The DT, DD, and D3He fusion cross-sections follow H. S. Bosch and G. M. Hale, Nuclear Fusion, 32, 611 (1992); the p11B cross-section follows from H. W. Becker, C. Rolfs, and H. P. Trautvetter, Zeitschrift für Physik A, 327, 341 (1987).

    Google Scholar 

  8. See, for example, N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw Hill, New York, 1973).

    Google Scholar 

  9. T. Rider, PhD thesis, Massachusetts Institute of Technology (1995); T. Rider, Phys. Plasmas, 4, 1039 (1997).

  10. W. M. Nevins, Phys. Plasmas, 2, 3804 (1995).

    Google Scholar 

  11. See, for example, R. W. Bussard and N. A. Krall, Fusion Technol., nol., 26, 1326 (1994); B. C. Maglich, Nuclear Instrum. Methods A, 271, 13 (1988); D. C. Barnes, R. A. Nebel, and L. Turner, Phys. Fluids B, 5, 3651 (1993); N. Rostocker, F. Wessel, H. Rahman, B. C. Maglich, B. Spivey, and A. Fisher, Phys. Rev. Lett., 70, 1818 (1993).

    Google Scholar 

  12. J. M. Davidson, H. L. Berg, M. M. Lowry, M. R. Dwarakanth, A. J. Sierk, and P. Batay-Csorba, Nuclear Physics A, 315, 253 (1979).

    Google Scholar 

  13. J. D. Lawson, Proc. Phys. Soc. London, 70B, 6 (1957).

    Google Scholar 

  14. M. I. Knotek et al., A Restructured Fusion Energy Sciences Program. Fusion Energy Advisory Committee (January 1966).

  15. B. A. Trubnikov, “Universal Coefficients for Synchrotron Emission from Plasma Configurations”, in Reviews of Plasma Physics (Vol. 7), M. A. Leontovitch (ed.) (Consultants Bureau, New York, 1979), pp. 345–379.

    Google Scholar 

  16. N. A. Uckan et al., ITER Physics Design Guidelines: 1989, ITER Documentation Series No. 10 (IAEA, Vienna, 1990).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevins, W.M. A Review of Confinement Requirements for Advanced Fuels. Journal of Fusion Energy 17, 25–32 (1998). https://doi.org/10.1023/A:1022513215080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022513215080

Navigation