Skip to main content
Log in

Poly(ethylene Oxide)-Modified Polyaspartamide–Ferrocene Conjugates

  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

In continuation of earlier investigations of polymer–ferrocene conjugates for biomedical applications, this article deals with conjugates prepared by N-acylation of linear, amine-functionalized polyaspartamide carriers with 4-ferrocenylbutanoic acid. Acylation is brought about both by mediation of HBTU coupling agent and by the N-hydroxysuccinimide active ester method. The polymeric carriers contain oligo- or poly(ethylene oxide) side chains introduced here for enhancement of water solubility. The longer side chains, in addition, are to impart such biomedically important properties as increased resistance to uptake by the reticuloendothelial system and to protein binding, extended circulation life time, and lowered immunogenicity. The conjugates comprise from 10 to 25 mol% ferrocenylated subunits, corresponding to ca. 2–5% Fe by mass. Freshly prepared and isolated in the solid state, they dissolve smoothly in aqueous media, with upper concentration limits (>0.2g/ml) dictated solely by their viscosity behavior. The conjugates are of interest in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. C. Swarts, E. W. Neuse, and G. J. Lamprecht, J. Inorg. Organomet. Polym. 4, 143 (1994).

    Google Scholar 

  2. P. Köpf-Maier and H. Köpf, Struct. Bond. 70, 103 (1988).

    Google Scholar 

  3. P. Köpf-Maier, C. Janiak, and H. Schumann, Inorg. Chim. Acta 152, 75 (1988).

    Google Scholar 

  4. P. Köpf-Maier, H. Köpf, and E. W. Neuse, J. Cancer Res. Clin. Oncol. 108, 336 (1984).

    Google Scholar 

  5. M. Wenzel, Y. Wu, E. Liss, and E. W. Neuse, Z. Naturforsch. 43c, 963 (1988).

    Google Scholar 

  6. E. W. Neuse and F. Kanzawa, Appl. Organomet. Chem. 4, 19 (1990).

    Google Scholar 

  7. E. W. Neuse and C. W. Mbonyana, Polym. Mater. Sci. Eng. 61, 94 (1989).

    Google Scholar 

  8. E.W. Neuse and C. W. N. Mbonyana, in Inorganic and Metal-Containing Polymeric Materials, J. Sheats et al., eds. (Plenum Press, New York, 1990), p. 139.

    Google Scholar 

  9. H. Ringsdorf, J. Polym. Sci. Polym. Symp. 51, 135 (1975).

    Google Scholar 

  10. E. Hurwitz, R. Levy, R. Maron, M. Wilchek, R. Arnon, and M. Sela, Cancer Res. 35, 1175 (1975).

    Google Scholar 

  11. W. C. Shen and H. J.-P. Ryser, Proc. Natl. Acad. Sci. USA 75, 1872 (1978); Mol. Pharmacol. 16, 614 (1979).

    Google Scholar 

  12. R. Duncan, in Controlled Drug Delivery, 2nd ed., J. R. Robinson and V. H. L. Lee, eds. (Marcel Dekker, New York, 1987), p. 581; Anti-Cancer Drugs 3, 175 (1992).

    Google Scholar 

  13. R. Duncan and F. Spreafico, Clin. Pharmacokinet. 27, 290 (1994).

    Google Scholar 

  14. C. J. T. Hoes and J. Feijen, in Drug Carrier Systems, F. H. D. Roerdink and A. M. Kroon, eds. (John Wiley, New York, 1989), p. 57.

    Google Scholar 

  15. H. Sezaki, Y. Takakura, and M. Hashida, Adv. Drug Deliv. Rev. 3, 247 (1989).

    Google Scholar 

  16. D. Putnam and J. Kopeček, Adv. Polym. Sci. 122, 55 (1995).

    Google Scholar 

  17. V. Sa da Costa, D. Brier-Russell, E. W. Salzman, and E. W. Merrill, J. Colloid Interface Sci. 80, 594 (1980).

    Google Scholar 

  18. T. M. Allen and C. Hansen, Biochim. Biophys. Acta 1068, 133 (1991).

    Google Scholar 

  19. K. Fujimoto, H. Inoue, and Y. Ikeda, Polym. Prepr. 33, 482 (1992).

    Google Scholar 

  20. H.-C. Chiu, S. Zalipsky, P. Kopečkova, and J. Kopeček, Bioconjugate Chem. 4, 290 (1993).

    Google Scholar 

  21. F. Fuerteges and A. Abuchowski, J. Contr. Release 11, 139 (1990).

    Google Scholar 

  22. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, and Y. Sakurai, Polym. Prepr. 33, 72 (1992).

    Google Scholar 

  23. A. A. Bogdanov, R. J. Callahan, R. A. Wilkinson, C. Martin, J. A. Cameron, A. J. Fishman, T. J. Brady, and R. Weissleder, J. Nucl. Med. 35, 1880 (1994).

    Google Scholar 

  24. A. Abuchowski, T. van Es, N. C. Palczuk, and F. F. Davis, J. Biol Chem. 252, 3578 (1977).

    Google Scholar 

  25. R. Arshady, L. Illum, and S. S. Davis, Polym. Advan. Technol. 1, 345 (1990).

    Google Scholar 

  26. S. J. Farr, N. Jamshaid, P. Kearney, and I. W. Kellaway, Proc. Int. Symp. Control. Rel. Bioact. Mater. 15, 408 (1988).

    Google Scholar 

  27. PEG Chemistry: Bioetechnical and Biomedical Applications, J. M. Harris, ed. (Plenum Press, New York, 1992).

    Google Scholar 

  28. M. de L. Machado, E. W. Neuse, A. G. Perlwitz, and S. Schmitt. Polym. Advan. Technol. 1, 275 (1990).

    Google Scholar 

  29. E. W. Neuse, A. G. Perlwitz, and A. P. Barbosa, J. Appl. Polym. Sci. 54, 57 (1994).

    Google Scholar 

  30. H. Moroson and M. Rotman, in Polyelectrolytes and Their Applications, A. Rembaum and E. Selegny, eds. (D. Reidel, Dordrecht, 1975), p. 87.

    Google Scholar 

  31. G. Caldwell, E. W. Neuse, and A. G. Perlwitz, submitted for publication.

  32. K. L. Rinehart, R. J. Curby, and P. E. Sokol, J. Am. Chem. Soc. 79, 3420 (1957).

    Google Scholar 

  33. N. F. Blom, E. W. Neuse, and H. G. Thomas, Trans. Met. Chem. 12, 301 (1987).

    Google Scholar 

  34. P. Neri and G. Antoni, Macromol. Synt. 8, 25 (1982).

    Google Scholar 

  35. G. Caldwell, M. G. Meirim, E. W. Neuse, and C. E. J. van Rensburg, submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meirim, M.G., Neuse, E.W. & Caldwell, G.A. Poly(ethylene Oxide)-Modified Polyaspartamide–Ferrocene Conjugates. Journal of Inorganic and Organometallic Polymers 7, 71–91 (1997). https://doi.org/10.1023/A:1021488110997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021488110997

Navigation