Skip to main content
Log in

Static properties of two- and three-dimensional superconducting constrictions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Calculations have been performed on superconducting constrictions with hyperbolic geometry. Stationary Ginzburg-Landau equations are used, neglecting magneticfields. Emphasis is placed on the difference between two-and three -dimensional constrictions, which is related to the difference between uniform-thickness (UT) and variable-thickness (VT) superconducting microbridges. The width of the constriction w, normalized to the coherence length ξ is indicated by the parameter A (≃ w/2ξ). It is found that small (A < 0.1), three-dimensional constrictions and VT bridges have a sinusoidal current-phase relation, linear temperature dependence of the critical current I c, and an I cR product (Ris the normal state resistance) equal to the Ambegaokar-Baratoff expression for Josephson junctions near T c. Two-dimensional constrictions behave as if they consist of an inner core with junction properties, in series with the films on both sides. The core consists of the region within a coherence length from the center of the structure. This size is temperature dependent. The core shows a sinusoidal current-phase relation and IcR according to Ambegaokar and Baratoff. For the whole constriction neither the phase difference nor R is finite. Two-dimensional constrictions have linear temperature dependence only when they are extremely narrow (A < 0.001). In two-dimensionalbridges the order parameter is depressed cover a distance of approximately the coherence length; in small three-dimensional constrictions this distance is approximately equal to the width. In narrow constrictions (and short microbridges) the current is not homogeneously distributedover the cross section. The effect has been investigated that occurs when in three-dimensional constrictions the width w is not much larger than l 0, the electron mean free path in the basic material. To this purpose a Ginzburg-Landau equation is derived from the Zaitsev boundary conditions which is valid for continuously changing material parameters. The critical current is decreased, but the IcR product remains constant.The results of the calculations are compared with experimental results for superconducting microbridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson and A. H. Dayem, Phys. Rev. Lett. 13, 195 (1964).

    Google Scholar 

  2. P. E. Gregers-Hanson, M. T. Levinsen, and G. Fog Pedersen, J. Low Temp. Phys. 7, 99 (1972).

    Google Scholar 

  3. L. G. Aslamozow and A. I. Larkin, Zh. Eksp. Teor. Fiz. Pisma 9, 150 (1969). [Sov. Phys.—JETP Lett. 9, 87 (1969)].

    Google Scholar 

  4. P. V. Christiansen, E. B. Hansen, and C. J. Sjöström, J. Low Temp. Phys. 4, 349 (1971).

    Google Scholar 

  5. K. K. Likharev and L. A. Yakobson, Zh. Tekh. Fiz. 45, 1503 (1975). [Sov. Phys.—Techn. Phys. 20, 950 (1976)].

    Google Scholar 

  6. T. O. Kulik and A. N. Omel'yanchuk, Zh. Eksp. Teor. Fiz. Pisma 21, 216 (1975). [Sov. Phys.—JETP Lett. 21, 96 (1975).].

    Google Scholar 

  7. T. O. Kulik and A. N. Omel'yanchuk, Zh. Eksp. Teor. Fiz. 68, 2139 (1975) [Sov. Phys.—JETP 41, 1071 (1976)].

    Google Scholar 

  8. A. F. Volkov, Fiz. Tverd. Tela 15, 1364 (1973) [Sov. Phys.—Solid State 15, 925 (1973)].

    Google Scholar 

  9. P. Moon and D. E. Spencer, Field Theory Handbook (Springer, 1971).

  10. A. Baratoff, J. A. Blackburn, and B. B. Schwartz, Phys. Rev. Lett. 25, 1096 (1970).

    Google Scholar 

  11. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963); Erratum 11,104 (1963).

    Google Scholar 

  12. T. A. Fulton and R. C. Dynes, Phys. Rev. Lett. 25, 794 (1970).

    Google Scholar 

  13. L. D. Jackel, J. M. Warlaumont, J. C. Brown, T. D. Clark, R. A. Buhrman, M. T. Levinsen, in Low Temperature Physics LT14 (1975), Vol. 4, p. 148.

    Google Scholar 

  14. R. D. Sandell, S. S. Pei, and J. E. Lukens, Applied Superconductivity Conference, Stanford (1976), paper X7 (not included in Proceedings).

  15. M. T. Jahn and Y. H. Kao, J. Low Temp. Phys. 13, 175 (1973).

    Google Scholar 

  16. Y. Song and G. I. Rochlin, Phys. Rev. Lett. 29, 416 (1972).

    Google Scholar 

  17. I. K. Yanson, Fiz. Nizkikh Temp. 1, 141 (1975) [Sov. J Low Temp. Phys. 1, 67 (1975)].

    Google Scholar 

  18. T. M. Klapwijk, M. Sepers, and J. E. Mooij, J. Low Temp. Phys. 27, 801 (1977).

    Google Scholar 

  19. D. W. Jillie, Ph.D. Thesis, State University of New York, Stony Brook (1976).

    Google Scholar 

  20. M. Tinkham, M. Octavio, and W. J. Skcopol, J. Appl. Phys. 48, 1311 (1977).

    Google Scholar 

  21. R. O. Zaitsev, Zh. Eksp. Teor. Fiz. 50, 1055 (1966) [Sov. Phys.—JETP 23, 702 (1966)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooij, J.E., Dekker, P. Static properties of two- and three-dimensional superconducting constrictions. J Low Temp Phys 33, 551–576 (1978). https://doi.org/10.1007/BF00115575

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115575

Keywords

Navigation