Skip to main content
Log in

Superconductivity and disorder-driven metal-insulator transition in quench-condensed tin films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We have studied the effects of disorder in a series of Sn films quench-condensed onto cryogenically cooled substrates. We find a simple scaling of the conductivity with film thickness Σ ~ (d - d c )Ν, with Ν ≅ 0.85, and a metal-insulator transition near d c ≅ 40–50 ». The superconducting transition temperatures depend linearly on 1/d, provided d is not too small, and the films exhibit strong annealing effects. These features are explained using a model in which grain boundary scattering dominates intragrain scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Google Scholar 

  2. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979); L. Altshuler, A. B. Aronov, and P. A. Lee, Phys. Rev. Lett. 44, 1288 (1980).

    Google Scholar 

  3. G. Bergmann and Y. Bruynseraede, eds., Localization, Interaction, and Transport Phenomena (Spring, New York, 1985); P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Google Scholar 

  4. W. Buckel and R. Hilsch, Z. Physik 131, 420 (1952); 138, 109 (1954).

    Google Scholar 

  5. A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).

    Google Scholar 

  6. R. C. Dynes, J. P. Garno, and J. M. Rowell, Phys. Rev. Lett. 40, 479 (1978).

    Google Scholar 

  7. G. Deutcher, A. M. Goldman, and H. Mieklitz, Phys. Rev. B 31, 1679 (1985).

    Google Scholar 

  8. G. Deutcher, Physica 109&110B, 1629 (1982).

    Google Scholar 

  9. P. Meakin, Phys. Rev. B 28, 5221 (1983).

    Google Scholar 

  10. P. Ramanlal and L. M. Sander, Phys. Rev. Lett. 54, 1828 (1985).

    Google Scholar 

  11. F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).

    Google Scholar 

  12. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).

    Google Scholar 

  13. R. Messier and J. E. Yehoda, J. Appl. Phys. 58, 3739 (1985).

    Google Scholar 

  14. J. Vancea, G. Reiss, and H. Hoffman, Phys. Rev. B 35, 6435 (1987).

    Google Scholar 

  15. B. I. Belevtsev, Yu, F. Komnik, V. E. Kopina, and L. A. Yatsuk, Fiz. Nizk. Temp. 6, 754 (1980) [Sov. J. Low Temp. Phys. 6, 365 (1980)]; B. I. Belevtsev, V. V. Pilipenko, and L. A. Yatsuk, Fiz. Nizk. Temp. 7, 1010 (1981) [Sov. J. Low Temp. Phys. 7, 490 (1981)].

    Google Scholar 

  16. B. G. Orr, H. M. Jaeger, and A. M. Goldman, Phys. Rev. Lett. 53, 2046 (1984).

    Google Scholar 

  17. G. Bergmann, Z. Physik. 228, 25 (1969).

    Google Scholar 

  18. E. E. Semenenko and V. I. Tutov, Fiz. Nizk. Temp. 11, 364 (1985) [Sov. J. Low Temp. Phys. 11, 197 (1985)].

    Google Scholar 

  19. S. Klaumünzer, G. Ischenko, H. Adrian, and H. Neumüller, J. Low Temp. Phys. 36, 89 (1979).

    Google Scholar 

  20. S. Maekawa and H. Fukuyama, J. Phys. Soc. Japan 51, 1380 (1981); H. Ebisawa, H. Fukuyama, and S. Maekawa, J. Soc. Japan 54, 2257 (1985).

    Google Scholar 

  21. M. Strongin, R. S. Thompson, O. F. Kammerer, and J. E. Crow, Phys. Rev. B 1, 1078 (1970); H. R. Raffy, R. B. Laibowitz, P. Chaudhari, and S. Maekawa, Phys. Rev. B 28, 6607 (1983); A. F. Hebard and M. A. Paalanen, Phys. Rev. B 30, 4063 (1984); J. M. Graybeal and M. R. Beasley, Phys. Rev. B 29, 4167 (1984).

    Google Scholar 

  22. J. M. Ziman, Electrons and Phonons (Oxford, Clarendon Pres, 1960), p. 344.

    Google Scholar 

  23. A. F. Iofi and A. R. Regel, Prog. Semicond. 4, 237 (1960).

    Google Scholar 

  24. W. Götze, J. Phys. C 12, 1279 (1979).

    Google Scholar 

  25. A. Gold and W. Götze, J. Phys. C. 14, 4049 (1981); Phys. Rev. B 33, 2495 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markiewicz, R.S., Shiffman, C.A. & Ho, W. Superconductivity and disorder-driven metal-insulator transition in quench-condensed tin films. J Low Temp Phys 71, 175–191 (1988). https://doi.org/10.1007/BF00118574

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118574

Keywords

Navigation