Skip to main content
Log in

Superfluid films on a cylindrical surface

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superfluid films adsorbed on a cylindrical surface are studied. The superfluid density is calculated using a modification of the Kosterlitz-Thouless theory. There is no vortex unbinding transition because the vortex interaction is linear on long length scales. Thus the superfluid areal density, defined in terms of the real part of a response function, is nonzero for all T<Tλ. The superfluid density is anisotropic, differing for axial and azimuthal flows. Dissipation due to vortex motion is considered. The periodicity of the substrate leads to a zero frequency dissipation mechanism for flows in the axial direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6, 1181 (1973).

    Google Scholar 

  2. V. Kotsubo and G. A. Williams,Phys. Rev. Lett. 53, 691 (1984);Phys. Rev. B 33, 6106 (1986).

    Google Scholar 

  3. J. E. Berthold, D. J. Bishop, and J. D. Reppy,Phys. Rev. Lett. 39, 348 (1977); D. J. Bishop, J. E. Berthold, J. M. Parpia, and J. D. Reppy,Phys. Rev. B 24, 5047 (1981).

    Google Scholar 

  4. C. Wang and L. Yu,Phys. Rev. B 33, 599 (1986).

    Google Scholar 

  5. P. B. Weichman, M. Rasolt, M. E. Fisher, and M. J. Stephen,Phys. Rev. B 33, 4632 (1986).

    Google Scholar 

  6. D. T. Smith, K. M. Godshalk, and R. B. Hallock,Phys. Rev. B 36, 202 (1987); S. M. Cohen, R. A. Guyer, and J. Machta,Phys. Rev. B 33, 4664 (1986).

    Google Scholar 

  7. T. Minoguchi and Y. Nagaoka,Jpn. J. Appl. Phys. 26, 327 (1987).

    Google Scholar 

  8. T. Minoguchi and Y. Nagaoka, preprint.

  9. J. Machta and R. A. Guyer,Phys. Rev. Lett. 60, 2054 (1988).

    Google Scholar 

  10. H. Schulz,Z. Physik B 26, 377 (1977).

    Google Scholar 

  11. D. R. Nelson, inPhase Transitions and Critical Phenomena, Vol. 7, C. Domb and J. Liebowitz, eds. (Academic Press, New York, 1983).

    Google Scholar 

  12. A. Lenard,J. Math. Phys. 2, 682 (1961).

    Google Scholar 

  13. P. C. Hohenberg, and P. C. Martin,Ann. Phys. 34, 291 (1965).

    Google Scholar 

  14. P. Minnhagen and G. G. Warren,Phys. Rev. B 24, 2526 (1981).

    Google Scholar 

  15. V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia,Phys. Rev. B 21, 1806 (1980).

    Google Scholar 

  16. M. E. Fisher, M. N. Barber, and D. Jasnow,Phys. Rev. A 8, 1111 (1973).

    Google Scholar 

  17. J. Jose, L. P. Kadanoff, S. Kirkpatrick and D. R. Nelson,Phys. Rev. B 16, 1217 (1977).

    Google Scholar 

  18. D. R. Nelson,Phys. Rev. B 18, 2318 (1978).

    Google Scholar 

  19. J. M. Kosterlitz,J. Phys. C 10, 3753 (1977).

    Google Scholar 

  20. V. Ambegaokar and S. Teitel,Phys. Rev. B 19, 1667 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machta, J., Guyer, R.A. Superfluid films on a cylindrical surface. J Low Temp Phys 74, 231–261 (1989). https://doi.org/10.1007/BF00683374

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683374

Keywords

Navigation