Skip to main content
Log in

Superconducting tunnel junctions and quasiparticle trapping

  • Superconducting Films And Tunnel Junction Detectors
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The interaction of a nuclear particle or X-ray with a superconductor leads to the breaking of Cooper pairs and the creation of excess phonons and quasiparticles. The basic physics and the use of superconducting tunnel junctions as detectors of excess quasiparticles are reviewed. For superconducting absorbers of appreciable mass intrinsic limitations require the use of the phenomenon of quasiparticle trapping. The relaxation phonons released in the trapping process can also be detected and they can lead to amplification via further pair breaking. Superconducting tunnel junctions can also detect phonons produced by particle interactions in a substrate absorber. The use of series-connected arrays of junctions to achieve high sensitivity and good energy resolution is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. H. Wood and B. L. White,Appl. Phys. Lett. 15, 237 (1969).

    Google Scholar 

  2. G. H. Wood and B. L. White,Can. J. Phys. 51, 2032 (1973).

    Google Scholar 

  3. M. Kurakado and H. Mazaki,Phys. Rev. B22, 168 (1980).

    Google Scholar 

  4. M. Kurakado and H. Mazaki,Nucl. Instr. and Meth. 185, 141, 149 (1981).

    Google Scholar 

  5. D. Twerenbold,Europhys. Lett. 1, 209 (1986).

    Google Scholar 

  6. H. Kraus,et al., Europhys. Lett. 1, 161 (1986).

    Google Scholar 

  7. N. E. Booth, G. L. Salmon and D. A. Hukin, inSolar neutrinos and Neutrino Astronomy, M. L. Cherry, W. A. Fowler, K. Lande, eds. (American Institute of Physics, 1985), vol. AIP Conf. Proc. No. 126, p. 227.

  8. N. E. Booth,Appl. Phys. Lett. 50, 293 (1987).

    Google Scholar 

  9. T. Peterreins,et al., Phys. Lett. B202, 161 (1988).

    Google Scholar 

  10. W. Eisenmenger, inPhysical Accoustics, W. P. Mason, R. N. Thurston, eds. (Academic Press, London, 1976), vol. XII, p. 79.

    Google Scholar 

  11. K. E. Gray, inNon-equilibrium Superconductivity, Phonons, and Kapitza Boundaries, K. E. Gray, eds. (Plenum, New York, 1981), p. 131.

    Google Scholar 

  12. S. B. Kaplan,et al., Phys. Rev. B 14, 4854 (1976).

    Google Scholar 

  13. M. Gurvitch, M. A. Washington and H. A. Huggins,Appl. Phys. Lett. 42, 472 (1983).

    Google Scholar 

  14. M. Kurakado,Nucl. Instr. and Meth. 196, 275 (1982).

    Google Scholar 

  15. N. Rando,et al., Nucl. Instr. and Meth. A313, 173 (1992).

    Google Scholar 

  16. A. F. Cattell,et al., J. Phys. F:Metal Phys. 13, 855 (1983).

    Google Scholar 

  17. K. E. Gray, inSuperconductive Particle Detectors, A. Barone, eds. (World Scientific, Singapore, 1988), p. 1.

    Google Scholar 

  18. N. E. Booth and G. L. Salmon, eds.,Proceedings of the IVth International Workshop on Low Temperature Detectors for Neutrinos and Dark Matter (Editions Frontières, Gif-sur-Yvette, France, 1991).

    Google Scholar 

  19. D. J. Goldie,et al., Phys. Rev. Lett. 64, 954 (1990).

    Google Scholar 

  20. W. L. McMillan,Phys. Rev. 175, 537 (1968).

    Google Scholar 

  21. A. A. Golubov and E. P. Houwman,Physica C 205, 147 (1993).

    Google Scholar 

  22. D. J. Goldie,et al., Physica B 169, 443 (1991).

    Google Scholar 

  23. N. E. Booth,et al., inX-Ray Detection by Superconducting Tunnel Junctions, A. Barone, R. Cristiano, S. Pagano, eds. (World Scientific, Singapore, 1991), p. 125.

    Google Scholar 

  24. D. J. Goldie,et al., inSuperconducting Devices and their Applications, H. Koch, H. Lübbig, eds. (Springer-Verlag, Berlin, 1991), p. 474.

    Google Scholar 

  25. E. Cosulich, F. Gatti and S. Vitale,J. Low Temp. Phys. (this issue).

  26. H. Kraus,et al., Phys. Lett. B 231, 195 (1989).

    Google Scholar 

  27. D. J. Goldie,et al., Supercond. Sci. Technol. 6, 203 (1993).

    Google Scholar 

  28. P. L. Brink,et al., J. Low Temp. Phys. (this issue).

  29. C. A. Mears, S. E. Labov and A. T. Barfknecht, (submitted to Appl. Phys. Lett.).

  30. J. B. le Grand,et al., J. Low Temp. Phys. (this issue).

  31. C. L. Foden,et al., J. Appl. Phys. 73, 5098 (1993).

    Google Scholar 

  32. D. J. Goldie, inX-ray Detection by Superconducting Tunnel Junctions, A. Barone, R. Cristiano, S. Pagano, eds. (World Scientific, Singapore, 1991), p. 98.

    Google Scholar 

  33. R. J. Gaitskell, D.Phil. Thesis, Oxford University (1993).

  34. R. J. Gaitskell, eds., T. Paszkiewicz, K. Rapcewicz, “Die Kunst of Phonons” The Proceedings of the XXIX Winter School of Theoretical Physics (Plenum Press (New York), Kudowazdroj, Poland, 1993).

    Google Scholar 

  35. B. Cabrera,et al., Nucl. Phys. B 28A, 449 (1992).

    Google Scholar 

  36. B. Cabrera,J. Low Temp. Phys. (this issue).

  37. D. J. Goldie,et al., (submitted to Nucl. Instr. and Meth.).

  38. R. J. Gaitskell,et al., inMassive Neutrinos Tests of Fundamental Symmetries, O. Fackler, G. Fontaine, J. Trân Thanh Vân, eds. (Editions Frontières, Gif-sur-Yvette, France, 1991), p. 191.

    Google Scholar 

  39. R. J. Gaitskell, N. E. Booth and G. L. Salmon, inLow Temperature Detectors for Neutrinos and Dark Matter IV, N. E. Booth, G. L. Salmon, eds. (Editions Frontières, Gif-sur-Yvette, France, 1992), p. 435.

    Google Scholar 

  40. A. D. Hahn,et al., J. Low Temp. Phys. (this issue).

  41. R. J. Gaitskell,et al., J. Low Temp. Phys. (this issue).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, N.E., Brink, P.L., Gaitskell, R.J. et al. Superconducting tunnel junctions and quasiparticle trapping. J Low Temp Phys 93, 521–532 (1993). https://doi.org/10.1007/BF00693471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693471

Keywords

Navigation