Skip to main content
Log in

Experimental evidence of homogeneous superfluid turbulence in large-pore porous media

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Experimental results are presented for counterflow and isothermal coflow through large-pore porous materials, with porosities greater than 90% and permeabilities of order 10−11 m2. Counterflow velocities ranging from 0.06 to 0.14 m/s were obtained. Because of the large-pore geometry, and the velocity range investigated, the superfluid is fully turbulent. The counterflow data are well described by the two-fluid model using the Schwarz model of homogeneous mutual friction, with a larger, empirically-modified, mutual friction coefficient. The same mutual friction model is applied to the coflow results, assuming that dissipation due to superfluid vortex interaction with the wall of the porous media is negligible. In this case, the normal-fluid and superfluid velocities are coupled through the mutual friction, and relative velocities are calculated from pressure drop measurements. For mass flow velocities in the range 0.00 to 0.10 m/s, we calculate relative velocities up to 0.07 m/s, and normal-fluid velocities in excess of 0.04m/s. An interesting feature of the coflow pressure drop, as a function of the normal-fluid velocity, is that it is larger than the counterflow pressure drop by the ratio of the total density to the normal-fluid density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Tough, inProgress in Low Temperature Physics, Vol. VIII, Chap. 3, D. F. Brewer, ed. (North-Holland Publishing, Amsterdam, 1982).

    Google Scholar 

  2. S. C. Courts and J. T. Tough,Phys. Rev. B 38, 74 (1988).

    Google Scholar 

  3. H. Van Beelen, W. Van Joolingen, and K. Yamada,Physica B 153, 248 (1988).

    Google Scholar 

  4. P. L. Walstrom and J. R. Maddocks,Adv. Cryogenic Eng. 33, 449 (1987).

    Google Scholar 

  5. P. L. Walstrom, J. G. Weisend II, J. R. Maddocks, and S. W. Van Sciver,Cryogenics 28, 101 (1988).

    Google Scholar 

  6. H. Borner and D. W. Schmidt,Lect. Notes Phys. 235, 135 (1985).

    Google Scholar 

  7. R. J. Donnelly, inHigh Reynolds Numbers Flows Using Liquid and Gaseous Helium, R. J. Donnelly, ed. (Springer-Verlag, New York, 1991).

    Google Scholar 

  8. M. R. Smith, Ph.D. thesis, University of Oregon (1992).

  9. D. C. Samuels,Phys. Rev. B 47, 1107 (1993).

    Google Scholar 

  10. K. W. Schwarz and J. R. Rosen,Phys. Rev. Lett. 66, 1898 (1991).

    Google Scholar 

  11. L. D. Landau,J. Phys. (USSR) 5, 71 (1941).

    Google Scholar 

  12. L. D. Landau,J. Phys. (USSR) 8, 1 (1944).

    Google Scholar 

  13. R. Schmidt and H. Wiechert,Z. Phys. B 36, 1 (1979).

    Google Scholar 

  14. T. H. K. Frederking, H. van Kempen, M. A. Weenen, and P. Wyder,Physica 108B, 1129 (1981).

    Google Scholar 

  15. J. R. Maddocks and S. W. Van Sciver,Adv. Cryogenic Eng. 37A, 89 (1992).

    Google Scholar 

  16. F. A. Staas, K. W. Taconis, and W. M. Van Alphen,Physica 27, 893 (1961).

    Google Scholar 

  17. A. Bejan,Convection Heat Transfer, Chap. 10 (John Wiley and Sons, New York, 1984).

    Google Scholar 

  18. C. J. Gorter and J. H. Mellink,Physica 15, 285 (1949).

    Google Scholar 

  19. W. F. Vinen,Proc. Roy. Soc. A242, 493 (1957).

    Google Scholar 

  20. W. F. Vinen,Proc. Roy. Soc. A243, 400 (1957).

    Google Scholar 

  21. K. W. Schwarz,Phys. Rev. B 18, 245 (1978).

    Google Scholar 

  22. K. W. Schwarz,Phys. Rev. B 31, 5782 (1985).

    Google Scholar 

  23. K. W. Schwarz,Phys. Rev. B 38, 2398 (1988).

    Google Scholar 

  24. R. T. Wang, C. E. Swanson, and R. J. Donnelly,Phys. Rev. B 36, 5240 (1987).

    Google Scholar 

  25. M. Murakami and T. Hanyu,Cryogenics 32, 371 (1991).

    Google Scholar 

  26. J. F. Kafkalidis and J. T. Tough,Cryogenics 31, 705 (1991).

    Google Scholar 

  27. J. F. Kafkalidis, G. Klinich, and J. T. Tough, to be published in LT-20.

  28. S. K. Nemirovskii, G. Stamm, and W. Fiszdon,Phys. Rev. B 48, 7338 (1993).

    Google Scholar 

  29. W. E. Keller,Helium-3 and Helium-4, Chap. 8 (Plenum Press, New York, 1969).

    Google Scholar 

  30. J. R. Maddocks and S. W. Van Sciver,Adv. Cryogenic Eng. 35A (1990).

  31. Lockheed Missies and Space Company Inc., Astronautics Division, Sunnyvale, CA.

  32. P. L. Walstrom and J. R. Maddocks,Cryogenics 27, 429 (1987).

    Google Scholar 

  33. K. P. Martin and J. T. Tough,Phys. Rev. B 27, 2788 (1983).

    Google Scholar 

  34. C. F. Barenghi, R. J. Dormelly, and W. F. Vinen,J. Low Temp. Phys. 52, 189 (1983).

    Google Scholar 

  35. M. L. Baehr and J. T. Tough,Phys. Rev. Lett. 53, 1669 (1984).

    Google Scholar 

  36. K. W. Schwarz,Phys. Rev. Lett. 50, 364 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddocks, J.R., Van Sciver, S.W. Experimental evidence of homogeneous superfluid turbulence in large-pore porous media. J Low Temp Phys 96, 245–274 (1994). https://doi.org/10.1007/BF00754740

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754740

Keywords

Navigation