Skip to main content
Log in

The Role of Stroma in Breast Carcinoma Growth In Vivo

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The malignant progression of tumors is thoughtto be related to the expression of oncogenes and loss ofexpression of tumor suppressor gene. These factors areintrinsic to the cancer cells themselves. However, carcinomas are also infiltrated by host cells(fibroblasts, endothelial cells, inflammatory cells) andsurrounded by an extracellular matrix which isextensively remodeled. The extracellular matrixcomponents and infiltrating host cells provide amicroenvironment that conditions both tumor progressionand the metastatic process. Transplantation of humantumors into athymic nude mice has become an importantexperimental approach to study the biology of human cancers.The different models developed so far are beginning toelucidate the role of matrix molecules, growth factorsand enzymes as well as fibroblasts in tumor progression. These animal models are likely toprovide a useful tool to evaluate new antitumortreatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. LaFlamme and K. L. Auer (1996). Integrin signaling. Sem. Cancer Biol. 7: 111-118.

    Google Scholar 

  2. V. M. Weaver, A. H. Fisher, O. W. Peterson, and M. J. Bissel (1997). The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimension al culture assay. Biochem. Cell Biol. 74: 833-851.

    Google Scholar 

  3. S. M. Frisch, and H. Francis (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124: 619-626.

    Google Scholar 

  4. C. H. Streuli, C. Schmidhauser, N. Bailey, P. Yurchenco, A. P. N. Skubitz, C. Roskelley, and M. J. Bissell (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. J. Cell Biol. 129: 591-603.

    Google Scholar 

  5. C. Streuli and G. Edwards (1998). Control of normal mammary epithelial phenotype by integrins. J. Mam. Gland Biol. Neoplatisia 3: xx-xx.

    Google Scholar 

  6. A. Lochter, A. Srebrow, C. J. Sympson, N. Terracio, Z. Werb, and M. J. Bissell (1997). Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J. Biol. Chem. 272: 5007-5015.

    Google Scholar 

  7. L. A. Rudolph-Owen and L.M. Matrisian (1998). Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J. Mam. Gland Biol. Neoplasia 3: 177-190.

    Google Scholar 

  8. M. Mareel, M. E. Bracke, F. Van Roy, and P. de Baetselier (1997). Molecular mechanisms of cancer invasion. In Encyclopedia of Cancer, (Vol. II), Academic Press, Inc., pp. 1072-1083.

    Google Scholar 

  9. H. F. Dvorak (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315: 1650-1659.

    Google Scholar 

  10. J. Folkman (1995). Angiogenesis in cancer, vascular, rheumatoid, and other disease. Nature Med. 1: 27-31.

    Google Scholar 

  11. M. C. Rio, O. Lefebvre, M. Santavicca, A. Noël, M. P. Chenard, P. Anglard, J. A. Byrne, A. Okada, C. H. Régnier, R. Masson, J. P. Bellocq, and P. Basset (1996). Stromelysin-3 in the biology of the normal and neoplastic mammary gland. J. Mam. Gland Biol. Neoplasia 1: 231-240.

    Google Scholar 

  12. M. Grégoire and B. Lieubeau (1995). The role of fibroblasts in tumor behavior. Cancer Metastasis Rev. 14: 339-350.

    Google Scholar 

  13. N. Wernert (1997). The multiple roles of tumor stroma. Virchows Arch. 430: 433-443.

    Google Scholar 

  14. D. Verhoeven, N. Bourgeois, A. Noël, J. M. Foidart, and N. Buyssens (1990). The presence of a type IV collagen skeleton associated with periductal elastosis in breast cancer. J. Histochem. Cytochem. 38: 245-255.

    Google Scholar 

  15. H. Kosmehl, A. Berndt, and D. Katenkamp (1996). Molecular variants of fibronectin and laminin: Structure, physiological occurrence and histopathological aspects. Virchows Arch. 429: 311-322.

    Google Scholar 

  16. K. Henning, H. Kosmehl, A. Berndt, P. Rousselle, and D. Gabler Katenkamp (1995). Differential expression of laminin chains is benign and malignant lesions of the breast. Pathol. Res. Pract. 191: 175.

    Google Scholar 

  17. A. Bellahcène, S. Menard, R. Bufalino, L. Moreau, and V. Castronovo (1996). Expression of bone sialoprotein in primary human breast cancer is associated with poor survival. Int. J. Cancer 69: 350-353.

    Google Scholar 

  18. S. Peyrol, M. Raccurt, F. Gerard, C. Gleyzal, J. A. Grimaud, and P. Sommer (1997). Lysyl oxidase gene expression in the stromal reaction to in situ and invasive ductal breast carcinoma. Am. J. Pathol. 150: 497-507.

    Google Scholar 

  19. A. Noël, C. Munaut, A. Boulvain, C. M. Calberg-Bacq, Ch. A. Lambert, B. Nusgens, Ch. M. Lapière, and J. M. Foidart (1992). Modulation of collagen and fibronectin synthesis in fibroblasts by normal and malignant cells. J. Cell. Biochem. 48: 150-161.

    Google Scholar 

  20. M. J. Merrilees and G. J. Finlay (1985). Human tumor cells in culture stimulate glycosaminoglyca n synthesis by human skin fibroblasts. Lab. Invest. 53: 30-36.

    Google Scholar 

  21. L. Ronnov-Jenssen, O. W. Petersen, V. E. Koteliansky, and M. J. Bissell (1995). The origin of the myofibroblast s in breast cancer: Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95: 859-873.

    Google Scholar 

  22. A. B. Unden, B. Sandstedt, K. Bruce, M. A. Hedblad, and M. Ståhle-Bäckdahl (1996). Stromelysin-3 mRNA associated with myofibroblasts is overexpressed in aggressive basal cell carcinoma and in dermafibrosarcoma but not in dermatofibrosarcoma. J. Invest. Dermatol. 107: 147-153.

    Google Scholar 

  23. R. Clarke (1996a). Human breast cancer cell line xenografts as models of breast cancer—the immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Br. Cancer Res. Treat. 39: 69-86.

    Google Scholar 

  24. R. Clarke (1996b). Animal models of breast cancer: Their diversity and role in biomedical research. Br. Cancer Res. Treat. 39: 1-6.

    Google Scholar 

  25. A. L. Harris, H. Zhang, A. Moghaddam, S. Fox, P. Scott, A. Pattison, K. Gatter, I. Stratford, and R. Bicknell (1996). Breast cancer angiogenesis—new approaches to therapy via antiangio-genesis, hypoxic activated drugs, and vascular targeting. Br. Cancer Res. Treat. 38: 97-108.

    Google Scholar 

  26. S. W. McLeskey, L. Zhang, S. Kharbanda, J. Kurebayashi, M. E. Lippman, R. B. Dickson, and F. G. Kern (1996). Fibroblast growth factor overexpressing breast carcinoma cells as models of angiogenesis and metastasis. Br. Cancer Res. Treat. 39: 103-117.

    Google Scholar 

  27. S. R. Wolman, G. H. Heppner, and E. Wolman (1997). New directions in breast cancer research. FASEB J. 11: 535-543.

    Google Scholar 

  28. J. E. Price (1996). Metastasis from human breast cancer cell lines. Br. Cancer Res. Treat. 39: 93-102.

    Google Scholar 

  29. R. R. Mehta, J. M. Graves, G. D. Hart, A. Shilkaitis, and T. K. Das Gupta (1993). Growth and metastasis of human breast carcinomas with Matrigel in athymic mice. Br. Cancer Res. Treat. 25: 65-71.

    Google Scholar 

  30. N. Brünner, E. W. Thompson, M. Spang-Thomsen, J. Rygaard, K. Danø, and J. A. Zwiebel (1992). LacZ transduced human breast cancer xenografts as an in vivo model for the study of invasion and metastasis. Eur. J. Cancer 28A: 1989-1995.

    Google Scholar 

  31. C. Manzotti, R. A. Audisio, and G. Pratesi (1993). Importance of orthotopic implantation for human tumors as model systems: relevance to metastasis and invasion. Clin. Exp. Metastasis 11: 5-14.

    Google Scholar 

  32. M. Taub, Y. Wang, T. M. Szcesny, and H. K. Kleinman (1990). Epidermal growth factor or transforming growth factor a is required for kidney tubologenesis inMatrigel cultures in serum-free medium. Proc. Natl. Acad. Sci. U.S.A. 87: 4002-4006.

    Google Scholar 

  33. S. Baatout (1997). Endothelial differentiation using Matrigel (Review). Anticancer Res. 17: 451-456.

    Google Scholar 

  34. A. Noël, V. Borcy, M. Bracke, C. Gilles, J. Bernard, P. Birembaut, M. Mareel, and J. M. Foidart (1995). Heterotransplantation of primary and established human tumour cells in nude mice. Anticancer Res. 15: 1-8.

    Google Scholar 

  35. A. Noël, N. Simon, J. Raus, and J. M. Foidart (1992). Basement membrane components (Matrigel) promote human breast adenocarcinoma MCF7 cells tumorigenicity and provide an in vivo model to assess cell responsiveness to estrogen. Biochem. Pharmacol. 43: 1263-1267.

    Google Scholar 

  36. R. Fridman, G. Giaccone, T. Kanemoto, G. R. Martin, A. F. Gazdar, and J. L. Mulshine (1990). Reconstituted basement membrane (Matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc. Natl. Acad. Sci. U.S.A. 87: 6698-6702.

    Google Scholar 

  37. R. Fridman, M. C. Kibbey, L. S. Royce, M. Zain, T. M. Sweeney, D. L. Jicha, J. R. Yannelli, G. R. Martin, and H. K. Kleinman (1991). Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. J. Natl. Cancer Inst. 83: 769-775.

    Google Scholar 

  38. P. Topley, D. C. Jenkins, E. A. Jessup, and J. N. Stables (1993). Effect of reconstituted basement membrane components on the growth of a panel human tumour cell lines in nude mice. Brit. J. Cancer 67: 953-958.

    Google Scholar 

  39. T. Lopez-Conejo, N. Olmo, J. Turnay, J. Navarro, and A. Lizarbe (1996). Characterization of tumorigenic sub-lines from a poorly tumorigenic human colon-adenocarcin oma cell line. Int. J. Cancer 67: 668-675.

    Google Scholar 

  40. P. Mullen, A. Ritchie, S. P. Langdon, and W. R. Miller (1996). Effect of matrigel on the tumorigenicity of human breast and ovarian carcinoma cell lines. Int. J. Cancer 67: 816-820.

    Google Scholar 

  41. A. Passaniti, J. T. isaacs, J. A. Haney, S. W. Adler, T. J. Cujdik, P. V. Long, and H. K. Kleinman (1992). Stimulation of human prostatic carcinoma tumor growth in athymic mice and control of migration in culture by extracellular matrix. Int. J. Cancer 51: 318-324.

    Google Scholar 

  42. D. S. Grant, M. C. Kibbey, J. L. Kinsella, M. C. Cid, and H. K. Kleinman (1994). The role of basement membrane in angiogenesis and tumor growth. Path. Res. Pract. 190: 854-863.

    Google Scholar 

  43. Y. Ito, Y. Iwamoto, K. Tanaka, K. Okuyama, and Y. Sugioka (1996). A quantitative assay using basement membrane extracts to study tumor angiogenesis in vivo. Int. J. Cancer 67: 148-152.

    Google Scholar 

  44. R. D. Bonfil, A. Vinyals, O. D. Bustuoabad, A. Llorens, F. J. Banavides, M. Gonzales-Garrigues, and A. Fabra (1994). Stimulation of angiogenesis as an explanation of Matrigel-enhanced tumorigenicity. Int. J. Cancer 58: 233-239.

    Google Scholar 

  45. T. Kanemoto, R. Reich, L. Royce, D. Greatorex, S. H. Adler, N. Shiraishi, G. R. Martin, Y. Yamada, and H. K. Kleinman (1990). Identification of an amino acid sequence from the laminin-A chain that stimulates metastasis and collagenase-IV production. Proc. Natl. Acad. Sci. U.S.A. 87: 2279-2283.

    Google Scholar 

  46. S. Stack, R. D. Gray, and S. V. Pizzo. (1991). Modulation of plasminogen activation and type IV collagenase activity by a synthetic peptide derived from the laminin A chain. Biochemistry 30: 2073-2077.

    Google Scholar 

  47. R. S. Bresalier, B. Schwartz, Y. S. Kim, Q. Y. Duh, H. K. Kleinman, and P. M. Sullam (1995). The laminin a1 chain Ile-Lys-Val-Ala-Val (IKVAV)-containing peptide promotes liver colonization by human colon cancer cells. Cancer Res. 55: 2476-2480.

    Google Scholar 

  48. Y. Iwamoto, M. Nomizu, Y. Yamada, Y. Ito, K. Tanaka, and Y. Sugioka (1996). Inhibition of angiogenesis, tumour growth and experimental metastasis of human fibrosarcoma cells HT1080 by a multimetric form of the laminin sequence Tyr-Ile-Gly-Ser-Arg (YIGSR). Brit. J. Cancer 73: 589-595.

    Google Scholar 

  49. A. Noël, H. Emonard, M. Polette, P. Birembaut, and J. M. Foidart (1994). Role of matrix, fibroblasts and type IV collagenases in tumor progression and invasion. Pathol. Res. Pract. 190: 934-941.

    Google Scholar 

  50. A. Noël, M. C. De Pauw-Gillet, G. Purnell, B. Nusgens, Ch. M. Lapière, and J. M. Foidart (1993). Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by Matrigel and fibroblasts. Brit. J. Cancer 68: 909-915.

    Google Scholar 

  51. C. E. P. van Roozendaal, B. van Ooijen, J. G. M. Klijn, C. Claassen, A. M. M. Eggermont, S. C. Henzen-Logmans, and J. A. Foekens (1992). Stromal influences on breast cancer cell growth. Brit. J. Cancer 65: 77-81.

    Google Scholar 

  52. J. L. Camps, S. M. Chang, T. C. Hsu, M. R. Freeman, S. J. Hong, H. E. Zhau, A. C. von Eschenbach, and L. W. K. Chung (1990). Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc. Natl. Acad. Sci. U.S.A. 87: 75-79.

    Google Scholar 

  53. H. Birkedal-Hansen (1995). Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol. 7: 728-735.

    Google Scholar 

  54. K. J. Heppner, L. M. Matrisian, R. A. Jensen, and W. H. Rodgers (1996). Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am. J. Pathol. 149: 273-282.

    Google Scholar 

  55. A. Noël, O. Lefebvre, E. Maquoi, L. Vanhoorde, M. P. Chenard, M. Māreel, J. M. Foidart, P. Basset, and M. C. Rio (1996). Stromelysin-3 expression promote tumor take in nude mice J. Clin. Invest. 97: 1924-1930.

    Google Scholar 

  56. H. Pulyaeva, J. Bueno, M. Polette, P. Birembaut, H. Sato, M. Seiki, E. W. Thompson (1997). MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clin. Exp. Metastasis 15: 111-120.

    Google Scholar 

  57. J. R. MacDougall and L. M. Matrisian (1995). Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev. 14: 351-362.

    Google Scholar 

  58. D. C. Talbot and P. D. Brown (1996). Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur. J. Cancer 14: 2528-2533.

    Google Scholar 

  59. Y. A. DeClerck, N. Perez, H. Shimada, T. C. Boone, K. E. Langley, and S. M. Taylor (1992). Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res. 52: 701-708.

    Google Scholar 

  60. S. Imren, D. B. Kohn, H. Shimada, L. Blavier, and Y. A. DeClerck (1996). Overexpression of tissue inhibitor of metalloproteinases-2 by retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res. 56: 2891-2895.

    Google Scholar 

  61. J. A. Low, M. D. Johnson, E. A. Bone, and R. B. Dickson (1996). The matrix metalloproteinase inhibitor Batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice. Clin. Cancer Res. 2: 1207-1214.

    Google Scholar 

  62. M. Wang, Y. E. Liu, J. Greene, S. Sheng, A. Fuchs, E.M. Rosen, Y. E. Shi (1997). Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4. Oncogene 14: 2767-2774.

    Google Scholar 

  63. M. P. Chenard, L. O'Siorain, S. Shering, N. Rouyer, Y Lutz, C. Wolf, P. Basset, J. P. Bellocq, and M. J. Duffy (1996). High levels of stromelysin-3 correlate with poor prognosis in patients with breast carcinoma. Int. J. Cancer (Pred. Oncol.) 69: 448-451.

    Google Scholar 

  64. J. Taipale and J. Keski-Oja (1997). Growth factors in the extracellular matrix. FASEB J. 11: 51-59.

    Google Scholar 

  65. J. L. Fowlkes, J. J. Enghild, K. Suzuki, and H. Nagase (1994). Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J. Biol. Chem. 269: 25742-25746.

    Google Scholar 

  66. E. Levi, R. Fridman, H. Q. Miao, Y. S. Ma, A. Yayon, and I. Vlodavsky (1994) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc. Natl. Acad. Sci. U.S.A. 93: 7069-7074.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noel, A., Foidart, JM. The Role of Stroma in Breast Carcinoma Growth In Vivo. J Mammary Gland Biol Neoplasia 3, 215–225 (1998). https://doi.org/10.1023/A:1018703208453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018703208453

Navigation