Skip to main content
Log in

Ultrasonic flaw classification in weldments using probabilistic neural networks

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A probabilistic neural network is used here to classify flaws in weldments from their ultrasonic scattering signatures. It is shown that such a network is both simple to construct and fast to train. Probabilistic nets are also shown to be able to exhibit the high performance of other neural networks, such as feed forward nets trained via back-propagation, while possessing important advantages of speed, explicitness of their architecture, and physical meaning of their outputs. Probabilistic nets are also demonstrated to have performance equal to common statistical approaches, such as theK-nearest neighbor method, while retaining their unique advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook on the Ultrasonic Examination of Welds (The Welding Institute, Abington Hall, Cambridge, England, 1977).

  2. The Evaluation of Ultrasonic Signals (The International Institute of Welding, Cambridge, England, 1987).

  3. S. F. Burch, Objective characterization of welding defects using physical based pattern recognition techniques. inReview of Progress in Quantitative Nondestructive Evaluation, Vol. 7B, D. O. Thompson and D. E. Chimenti, eds. Plenum Press, New York, 1988, pp. 1495–1502.

    Google Scholar 

  4. J. L. Rose, Elements of a feature-based ultrasonic inspection system.Mater. Eval. 42(2):210–218 (1984).

    Google Scholar 

  5. J. L. Rose, Y. H. Jeong, and C. T. Cooper, A methodology for reflector classification analysis in complex geometric welded structures,Mater. Eval. 42(1):98–106 (1984).

    Google Scholar 

  6. J. L. Rose, J. Nestleroth, L. Niklas, O. Ganglbauer, J. Ausserwoeger, and F. Wallner, Flaw classification in welded plates employing a multidimensional feature-based decision process.Mater. Eval. 42(4):433–438, 443 (1984).

    Google Scholar 

  7. M. F. Whalen and A. N. Mucciardi. Inversion of physically recorded ultrasonic waveforms using adaptive learning network models trained on theoretical data. inProc. ARPA/AFML Review of Progress in Quantitative NDE, D.O. Thompson, ed. (Air Force Materials Laboratory Technical Report AFML-TR-78-205, 1979), pp. 341–367.

  8. S. M. Nugen, L. W. Schmerr, K. M. Christensen, and B. K. Lovewell, Design and implementation of an expert system for flaw classification,Microcomp. Appl. 9:1–8 (1990).

    Google Scholar 

  9. L. W. Schmerr, K. E. Christensen, S. M. Nugen, L.-S. Koo, and C.-P. Chiou, Ultrasonic flaw classification — An expert system approach. inReview of Progress in Quantitative Nondestructive Evaluation, Vol. 8A, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1989), pp. 657–664.

    Google Scholar 

  10. S. J. Song and L. W. Schmerr, Ultrasonic flaw classification in weldments using neural networks, inReview of Progress in Quantitative Nondestructive Evaluation, Vol. 10A, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1990), pp. 697–704.

    Google Scholar 

  11. L. M. Brown and R. DeNale, Classification of ultrasonic defect signatures using an artificial neural network, inReview of Progress in Quantitative Nondestructive Evaluation, Vol. 10A, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1990), pp. 705–712.

    Google Scholar 

  12. D. Berry, L. Udpa, and S. S. Udpa, Classifications of ultrasonic signals via neural networks, inReview of Progress in Quantitative Nondestructive Evaluation, Vol. 10A, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1990), pp. 697–704.

    Google Scholar 

  13. R. P. Lippmann, An introduction to computing with neural nets,IEEE ASSP Mag. 4–22 (April 1987).

  14. Y. H. Pao,Adaptive Pattern Recognition and Neural Networks. (Addison-Wesley Publishing Co., Reading, MA, 1989).

    Google Scholar 

  15. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal representations by error propagation. inParallel Distributed Processing, Vol. 1, D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds. (MIT Press, Cambridge, MA, 1986), pp. 318–362.

    Google Scholar 

  16. D. F. Specht, Probabilistic neural networks for classification, mapping, or associative memory,Proc. IEEE Int. Conf. Neur. Net. 1:525–532 (1988).

    Google Scholar 

  17. D. F. Specht, Probabilistic neural networks,Neur. Net. 3:109–118 (1990).

    Google Scholar 

  18. D. F. Specht, Probabilistic neural networks and polynomial adaline as complementary techniques for classification.IEEE Trans. Neur. Net 1:111–121 (1990).

    Google Scholar 

  19. D. F. Specht and P. D. Shapiro, Generalization accuracy of probabilistic neural networks compared with back-propagation networks,Proc. Int. Joint Conf. Neur. Net. 1:887–892 (1991).

    Google Scholar 

  20. T. P. Washburne, M. M. Okamura, D. F. Specht, and W. A. Fisher, The Lockheed probabilistic neural network processor,Proc. Int. Joint Conf. Neur. Net. 1:513–518 (1991).

    Google Scholar 

  21. R. O. Duda and P. E. Hart,Pattern Classification and Scene Analysis (Wiley-Interscience Publication Co., 1973).

  22. D. F. Specht, Enhancements to probabilistic neural networks,Proc. Int. Joint Conf. Neur. Net. 1:761–768 (1992).

    Google Scholar 

  23. K. Fukunaga,Statistical Pattern Recognition, 2nd. Ed. (Academic Press, New York, 1990).

    Google Scholar 

  24. R. Schalkoff,Pattern Recognition (John Wiley and Sons, New York, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S.J., Schmerr, L.W. Ultrasonic flaw classification in weldments using probabilistic neural networks. J Nondestruct Eval 11, 69–77 (1992). https://doi.org/10.1007/BF00568290

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00568290

Key words

Navigation