Skip to main content
Log in

A respirometric method to measure mineralization of polymeric materials in a matured compost environment

  • Short Communication
  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

A respirometric method was developed to measure the mineralization of polymeric materials in a matured compost environment. For the purpose of evaluating the method, results obtained for the mineralization of glucose and cellulose are presented. The matured compost, in addition to supplied nutrients, micronutrients, and an inoculum, serves as the matrix which supports the microbial activity. Recovery of the substrate carbon in the form of carbon dioxide from the glucose and cellulose added to test vessels was 68 and 70%, respectively. A statistical evaluation of the results obtained on substrate mineralization was carried out and showed acceptable reproducibility between replicate test vessels and test runs. The testing protocol developed has the following important characteristics: (1) the test reactors are maintained at 53 °C at a high solids loading (60% moisture), which has certain characteristics that are similar to a thermophilic compost environment; (2) the test matrix providing microbial activity is derived from readily available organic materials to facilitate reproducibility of the method in different laboratories; (3) the equipment required to perform this test is relatively inexpensive; and (4) the information obtained on polymer mineralization is vital to the study and development of biodegradable polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. Brandl, R. A. Gross, R. W. Lenz, and R. C. Fuller,Adv. Biochem. Eng. 41 77 (1990).

    Google Scholar 

  2. D. L. Kaplan, J. M. Mayer, D. Ball, J. McCassie, A. L. Allen, and P. Stennhouse, inBiodegradable Polymers and Packaging, C. Ching, D. Kaplan, and E. Thomas, eds. (Technomic, Lancaster, PA, 1993), p. 1–42.

    Google Scholar 

  3. A. Gibbons,Technol. Rev. 92 69 (1989).

    Google Scholar 

  4. J. Glenn and N. Goldstein,BioCycle 33 48 (1992).

    Google Scholar 

  5. N. Goldstein and R. Stevtcville,BioCycle 33 44 (1992).

    Google Scholar 

  6. M. S. Finstein, inEnvironmental Microbiology, R. Mitchell, ed. (Wiley-Liss, New York, 1992), p. 355.

    Google Scholar 

  7. R. L. Chaney, inThe BioCycle Guide to the Art and Science of Composting (JG Press, Emmaus, PA, 1991), p. 240.

    Google Scholar 

  8. J. A. Hogan, F. C. Miller, and M. S. Finstein,Appl. Environ. Microbiol. 55 1082 (1989).

    Google Scholar 

  9. J.-D. Gu, D. Eberiel, S. P. McCarthy, and R. A. Gross,J. Environm. Polym. Degrad. 1 143 (1993).

    Google Scholar 

  10. R. A. Gross, J.-D. Gu, D. T. Eberiel, M. Nelson, and S. P. McCarthy, inBiodegradable Polymers and Packaging, C. Ching, D. Kaplan, and E. Thomas, eds. (Technomic, Lancaster, PA, 1993), p. 257–279.

    Google Scholar 

  11. J.-D. Gu, S. P. McCarthy, G. P. Smith, D. Eberiel, and R. A. Gross,Polym. Mater. Sci. Eng. 67 230 (1992).

    Google Scholar 

  12. J.-D. Gu, M. Gada, G. Kharas, D. Eberiel, S. P. McCarthy, and R. A. Gross,Polym. Mater. Sci. Eng. 67 351 (1992).

    Google Scholar 

  13. F. C. Miller,Microbiol. Ecol. 18 59 (1989).

    Google Scholar 

  14. K. Nakasaki, M. Sasaki, M. Shoda, and H. Kubota,Appl. Environ. Microbiol. 49 724 (1985).

    PubMed  Google Scholar 

  15. K. Nakasaki, M. Shoda, and H. Kubota,J. Ferment. Technol. 63 537 (1985).

    Google Scholar 

  16. K. Nakasaki, M. Shoda, and H. Kubota,J. Ferment. Technol. 64 539 (1986).

    Google Scholar 

  17. P. D. Bach, K. Nakasaki, M. Shoda, and H. Kubota,J. Ferment. Technol. 65 199 (1987).

    Google Scholar 

  18. F. C. Miller and M. S. Finstein,J. Water Pollut. Cont. Fed. 57 122 (1985).

    Google Scholar 

  19. M. S. Finstein, F. C. Miller, and P. F. Strom,J. Water Pollut. Cont. Fed. 58 272 (1986).

    Google Scholar 

  20. F. C. Miller, S. T. MacGregor, K. M. Psarianos, J. Cirello, and M. S. Finstein,J. Water Pollut. Cont. Fed. 54 111 (1982).

    Google Scholar 

  21. S. T. MacGregor, F. C. Miller, K. M. Psarianos, and M. S. Finstein,Appl. Environ. Microbiol. 41 1321 (1981).

    Google Scholar 

  22. P. M. Strom,Appl. Environ. Microbiol. 50 899 (1985).

    PubMed  Google Scholar 

  23. D. F. Gilmore, S. Antoun, R. W. Lenz, S. Goodwin, R. Austin, and R. C. Fuller,J. Industr. Microbiol. 10 199 (1992).

    Google Scholar 

  24. A. M. Fogarty and O. H. Tuovinen,Microbiol. Rev. 55 225 (1991).

    PubMed  Google Scholar 

  25. D. R. Reinhart and F. G. Pohland,J. Industr. Microbiol. 8 193 (1991).

    Google Scholar 

  26. U.S. Food and Drug Administration,Environmental Assessment Technical Assistance Handbook PB87-175345 (National Technical Information Service, Washington, DC, 1987).

    Google Scholar 

  27. J. M. Mayer, M. Greenberger, D. L. Kaplan, R. A. Gross, and S. P. McCarthy,Polym. Mater. Sci. Eng. 63 858 (1990).

    Google Scholar 

  28. J. E. McCassie, J. M. Mayer, R. E. Stote, A. E. Shupe, P. J. Stenhouse, P. A. Dell, and D. L. Kaplan,Polym. Mater. Sci. Eng. 67 353 (1992).

    Google Scholar 

  29. J. M. Mayer and D. L. Kaplan, inBiodegradable Polymers and Packaging, C. Ching, D. Kaplan, and E. Thomas, eds. (Technomic, Lancaster, PA, 1993), p. 233–245.

    Google Scholar 

  30. J. E. McCassie, J. M. Mayer, R. E. Stote, A. E. Shupe, P. J. Stennhouse, P. A. Dell, and D. L. Kaplan, inBiodegradable Polymers and Packaging, C. Ching, D. Kaplan, and E. Thomas, eds. (Technomic, Lancaster, PA, 1993), p. 247–256.

    Google Scholar 

  31. R. Tillinger, B. De Wilde, and L. De Baere,Polym. Mater. Sci. Eng. 67 359 (1992).

    Google Scholar 

  32. L. De Baere, inBiotechnology and Bioengineering Symposium N (John Wiley & Sons, New York, 1986), p. 321.

    Google Scholar 

  33. G. Swift, presented to the ASTM subcommittee D20.96 at the ASTM meeting, Atlanta, GA, Mar. 3 (1993).

  34. A.-C. Albertsson, S. O. Andersson, and S. Karlsson,Polym. Deg. Stab. 18 73 (1987).

    Google Scholar 

  35. S. Karlsson, O. Ljungquist, and A.-C. Albertsson,Polym. Deg. Stab. 21 237 (1988).

    Google Scholar 

  36. A.-C. Albertsson,Eur. Polym. J. 16 623 (1980).

    Google Scholar 

  37. J. P. E. Anderson, inMethods of Soil Analysis (Part 2), Chemical and Microbiological Properties, 2nd ed., A. L. Page, ed. (Soil Science Society of America, Milwaukee, WI, 1982), p. 831.

    Google Scholar 

  38. P. Barak, Y. Coquet, T. R. Halbach, and J. A. E. Molina,J. Environ. Qual. 20 173 (1991).

    Google Scholar 

  39. T. R. G. Gray and S. T. Williams, inSoil Micro-organisms (Longman, New York, 1975), p. 64.

    Google Scholar 

  40. M. Alexander, inIntroduction to Soil Microbiology (John Wiley & Sons, New York, 1977), p. 128.

    Google Scholar 

  41. R. Narayan, inScience and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects, H. A. J. Hoitink and H. M. Keener, eds. (Renaissance, OH, 1993), p. 339.

  42. N. E. Sharabi and R. Bartha,Appl. Environ. Microbiol. 59 1201 (1993).

    PubMed  Google Scholar 

  43. J.-D. Gu, D. Eberiel, S. P. McCarthy, and R. A. Gross,J. Environ. Polym. Degrad. 1 289 (1993).

    Google Scholar 

  44. J.-D. Gu, S. Yang, R. Welton, D. Eberiel, S. P. McCarthy, and R. A. Gross,manuscript in preparation.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Guest Editor: Dr. Graham Swift, Rohm & Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, JD., Coulter, S., Eberiel, D. et al. A respirometric method to measure mineralization of polymeric materials in a matured compost environment. J Environ Polym Degr 1, 293–299 (1993). https://doi.org/10.1007/BF01458296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458296

Key words

Navigation