Skip to main content
Log in

A physiological model for the pharmacokinetics of methylene chloride in B6C3F1 mice following i.v. administrations

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 1985

Abstract

A physiologic mathematical model was developed to describe the time course of14C-methylene chloride (14CH2Cl2) distribution and elimination in mice following single i.v. administrations of 10 and 50mg/kg. A whole-body model was used to simulate14CH2Cl2 concentrations in blood and tissues, pulmonary clearance of unchanged14CH2Cl2, and metabolic conversion to14CO2 and14CO as monitored by the appearances of these metabolites in expired breath. This diffusion-limited model was identified via a sequential optimization scheme using hybrid models for each compartment. Pulmonary elimination of unchanged14CH2Cl2 was modeled as a linear process while hepatic metabolism of14CH2Cl2 to the compounds14CO2and14CO was described by a saturable metabolic rate term. The model adequately described the dose dependence in methylene chloride distribution and metabolism when simulations were compared to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Anders, V. L. Kubic, and A. E. Ahmed. Metabolism of halogenated methanes and macromolecular binding.J. Environ. Pathol. Toxicol. 1:117–124 (1977).

    CAS  PubMed  Google Scholar 

  2. A. E. Ahmed, V. L. Kubic, J. L. Stevens, and M. W. Anders. Halogenated methanes: metabolism and toxicity.Fed. Proc. 39:3150–3151 (1980).

    CAS  PubMed  Google Scholar 

  3. J. L. Stevens, J. H. Ratnayake, and M. W. Anders. Metabolism of dihalomethanes to carbon monoxide. IV. Studies in isolated rat hepatocytes.Toxicol. Appl. Pharmacol. 55:484–489 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. R. Toftgard, O. G. Nilsen, and J. A. Gustafsson. Dose-dependent induction of rat liver microsomal cytochrome P-450 and microsomal enzymatic activities after inhalation of toluene and dichloromethane.Acta Pharmacol. Toxicol. 51:108–114 (1982).

    Article  CAS  Google Scholar 

  5. V. L. Kubic, M. W. Anders, R. R. Engel, C. H. Barlow, and W. S. Caughey. Metabolism of dihalomethanes to carbon monoxide. I.In vivo studies.Drug Metab. Dispos. 2:53–57 (1974).

    CAS  PubMed  Google Scholar 

  6. G. D. DiVincenzo and M. L. Hamilton. Fate and disposition of [14C] methylene chloride in the rat.Toxicol. Appl. Pharmacol. 32:385–393 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. D. W. Yesair, D. Jaques, P. Schepis, and R. H. Liss. Dose related pharmacokinetics of [14C] methylene chloride in mice.Fed. Proc. 36:998 (1977).

    Google Scholar 

  8. M. J. McKenna and J. A. Zempel. The dose dependent metabolism of [14C] methylene chloride following oral administration to rats.Fd. Cosmet. Toxicol. 19:73–78 (1980).

    Article  Google Scholar 

  9. M. J. McKenna, J. A. Zempel, and W. H. Braun. The pharmacokinetics of inhaled methylene chloride in rats.Toxicol. Appl. Pharmacol. 65:1–10 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. J. R. Withey and B. T. Collins. Chlorinated aliphatic hydrocarbons in the food industry: the comparative pharmacokinetics of methylene chloride, 1,2-dichloroethane, chloroform and trichloroethylene after i.v. administration in the rat.J. Environ. Pathol. Toxicol. 3:323–332 (1980).

    Google Scholar 

  11. J. R. Withey. The comparative pharmacokinetics and uptake of four chlorinated hydrocarbons from vegetable oil and aqueous solution. Proc. Second Int. Cong. Toxicol., Brussels (1980).

  12. M. E. Andersen. Saturable metabolism and its relationship to toxicity.CRC Crit. Rev. Toxicol. 9:105–150 (1981).

    Article  CAS  Google Scholar 

  13. R. J. Lutz, R. L. Dedrick, and D. S. Zaharko. Physiological pharmacokinetics: anin vivo approach to membrane transport.Pharmacol. Ther. 11:559–592 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. F. G. King and R. L. Dedrick. Physiologic model for the pharmacokinetics of 2′-deoxycoformycin in normal and leukemic mice.J. Pharmacokin. Biopharm. 9:519–534 (1981).

    Article  CAS  Google Scholar 

  15. R. K. Jain, L. E. Gerlowski, J. M. Weissbrod, J. Wang, and R. N. Pierson. Kinetics of uptake, distribution and excretion of zinc in rats.Ann. Biomed. Eng. 9:347–361 (1981).

    Article  CAS  Google Scholar 

  16. D. Z. D'Argenio and A. Schumitzky. A program package for simulation and parameter estimation in pharmacokinetic systems.Comput. Programs Biomed. 9:115–134 (1979).

    Article  PubMed  Google Scholar 

  17. C. W. Gear. The automatic integration of ordinary differential equations.Comm. ACM 14:176–179 (1971).

    Article  Google Scholar 

  18. C. W. Gear. DIFSUB for solution of ordinary differential equations.Comm. ACM 14:185–190 (1971).

    Article  Google Scholar 

  19. F. W. Oehme. Absorption, biotransformation and excretion of environmental chemicals.Clin. Toxicol. 17:147–158 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  21. A. C. Burton.Physiology and Biophysics of the Circulation. Year Book Medical Publishers, Chicago, (1965), p. 64.

    Google Scholar 

  22. R. L. Dedrick, D. D. Forrester, J. N. Cannon, S. M. El Dareer, and L. B. Mellet. Pharmacokinetics of 1-D-arabinofuranasylcytosine (ARA-C) deamination in several species.Biochem. Pharmacol. 22:2405–2407 (1973).

    Article  CAS  PubMed  Google Scholar 

  23. E. F. Adolph. Quantitative relations in the physiological constitutions of mammals.Science 109:579–585 (1949).

    Article  CAS  PubMed  Google Scholar 

  24. D. B. Tuey and H. B. Matthews. Use of a physiological compartmental model for the rat to describe the pharmacokinetics of several chlorinated biphenyls in the mouse.Drug Metab. Dispos. 8:397–403 (1980).

    CAS  PubMed  Google Scholar 

  25. M. Mintun, K. J. Himmelstein, R. L. Schroder, M. Gibaldi, and D. D. Shen. Tissue distribution kinetics of tetraethylammonium ion in the rat.J. Pharmacokin. Biopharm. 8:373–407 (1980).

    Article  CAS  Google Scholar 

  26. F. T. Lindstrom, J. W. Gillette, and S. E. Rodecap. Distribution of HEOD (Dieldrin) in mammals: II. Some applications of the preliminary model.Arch. Environ. Contamin. 3:166–182 (1975).

    Article  CAS  Google Scholar 

  27. J. M. Engasser, F. Sarhan, C. Falcoy, M. Minier, P. Letourneur, and G. Siest. Distribution, metabolism and elimination of phenobarbital in rats. Physiologically-based pharmacokinetic model.J. Pharm. Sci. 70:1233–1238 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. R. L. Dedrick, D. D. Forrester, and D. H. W. Ho.In vitro-in vivo correlation of drug metabolism-deamination of 1-Β-D-arabinofuranosylcytosine.Biochem. Pharmacol. 21:1–16 (1972).

    Article  CAS  PubMed  Google Scholar 

  29. Y. Igari, Y. Sugiyama, S. Awazu, and M. Hanano. Comparative physiologically-based pharmacokinetics of hexobarbital, phenobarbital and thiopental in the rat.J. Pharmacokin. Biopharm. 10:53–75 (1982).

    Article  CAS  Google Scholar 

  30. P. M. Bungay, R. L. Dedrick, and H. B. Matthews. Pharmacokinetics of halogenated hydrocarbons.Ann. N.Y. Acad. Sci. 320:257–270 (1979).

    Article  CAS  PubMed  Google Scholar 

  31. J. M. Collins, R. L. Dedrick, F. G. King, J. L. Speyer, and C. E. Myers. Nonlinear pharmacokinetic models for 5-fluorouracil in man: intravenous and intraperitoneal routes.Clin. Pharmacol. Ther. 28:235–246 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. J. L. Rheingold, R. E. Lindstrom, and P. K. Wilkinson. A new blood flow pharmacokinetic model for ethanol.J. Pharmacokin. Biopharm. 9:261–278 (1981).

    Article  CAS  Google Scholar 

  33. H. Savolainen, K. Kurppa, P. Pfaffli, and H. Kivisto. Dose-related effects of dichloromethane on rat brain in short-term inhalation exposure.Chem.-Biol. Interact. 34:315–322 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. L. Z. Benet. Effect of route of administration and distribution on drug action.J. Pharmacokin. Biopharm. 6:559–585 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF01073661.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelo, M.J., Bischoff, K.B., Pritchard, A.B. et al. A physiological model for the pharmacokinetics of methylene chloride in B6C3F1 mice following i.v. administrations. Journal of Pharmacokinetics and Biopharmaceutics 12, 413–436 (1984). https://doi.org/10.1007/BF01062666

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062666

Key words

Navigation