Skip to main content
Log in

Effect of Dissipation on Quantum Tunneling of Vortices in Tl2Ba2Ca2Cu3O10+δSuperconductors

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The temperature and magnetic field dependence of the magnetic relaxation rate has been investigated at low temperatures (1.8 < T < 10 K) on two Tl2Ba2Ca2Cu3O10+δ samples (epitaxial thin film and sintered pellet). The temperature dependence gives evidence of a crossover in the mechanism of vortex motion, from classical thermal activation to quantum tunneling as temperature decreases. The field dependence of the relaxation rate indicates a crossover in the dimensionality of vortices, from three-dimensional flux lines to two-dimensional pancake vortices as field increases. For the thin film, the temperature dependence of the rate has been fitted to the theoretically predicted expressions for finite-temperature enhancement of the quantum rate in different regimes of dissipation. In spite of the similarity of the fits, the estimate of the ratio of Hall to viscous drag terms in the equation of motion indicates that quantum tunneling in this system occurs in an intermediate dissipative regime, where both terms contribute to the motion of vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Fruchter, A. P. Malozemoff, I. A. Campbell, J. Sanchez, M. Konczykowski, R. Griessen, and F. Holtzberg, Phys. Rev. B 43, 8709 (1991).

    Google Scholar 

  2. K. Aupke, T. Teruzzi, P. Visani, A. Amann, A. C. Mota, and V. N. Zavaritsky, Physica C 209, 255 (1993).

    Google Scholar 

  3. S. Moehlecke and Y. Kopelevich, Physica C 222, 149 (1994).

    Google Scholar 

  4. A. García, X. X. Zhang, A. M. Testa, D. Fiorani, and J. Tejada, J. Phys.: Condens. Matter 4, 10341 (1992).

    Google Scholar 

  5. A. C. Mota, A. Pollini, G. Juri, P. Visani, and B. Hilti, Physica A 168, 298 (1990).

    Google Scholar 

  6. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981); Ann. Phys. (NY) 149, 374 (1983).

    Google Scholar 

  7. G. Blatter and V. B. Geshkenbein, Phys. Rev. B 47, 2725 (1993).

    Google Scholar 

  8. M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and S. Levit, Pis'ma Zh. Ekh. Teor. Fiz. 57, 699 (1993) [Sov. Phys. JETP Lett. 57, 711 (1993)].

    Google Scholar 

  9. P. Ao and D. J. Thouless, Phys. Rev. Lett. 72, 132 (1994).

    Google Scholar 

  10. Y. Matsuda, N. P. Ong, Y. F. Yan, J. M. Harris, and J. B. Peterson, Phys. Rev. B 49, 4380 (1994).

    Google Scholar 

  11. J. M. Harris, Y. F. Yan, O. K. C. Tsui, Y. Matsuda, and N. P. Ong, Phys. Rev. Lett. 73, 1711 (1994).

    Google Scholar 

  12. H. Grabert, U. Weiss, and P. Hänggi, Phys. Rev. Lett. 52, 2193 (1984); H. Grabert, P. Olschowski, and U. Weiss, Phys. Rev. B 36, 1931 (1987).

    Google Scholar 

  13. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Google Scholar 

  14. M. J. Stephen, Phys. Rev. Lett. 72, 1534 (1994).

    Google Scholar 

  15. A. J. J. van Dalen, R. Griessen, J. C. Martinez, P. Fivat, J.-M. Triscone, and Ø. Fischer, Phys. Rev. B 53, 896 (1996).

    Google Scholar 

  16. A. García, X. X. Zhang, J. Tejada, M. Manzel, and H. Bruchlos, Phys. Rev. B 50, 9439 (1994).

    Google Scholar 

  17. X. X. Zhang, A. Garcia, J. Tejada, Y. Xin, and K. W. Wong, Physica C 232, 99 (1994).

    Google Scholar 

  18. E. H. Brandt, M. V. Indenbom, and A. Forkl, Europhys. Lett. 22, 735 (1993).

    Google Scholar 

  19. Y. Yeshurun, A. P. Malozemoff, and A. Shaulov, Rev. Mod. Phys. 68, 911 (1996); and references therein.

    Google Scholar 

  20. J. Tejada, E. M. Chudnovsky, and A. García, Phys. Rev. B 47, 11552 (1993); X. X. Zhang, A. García, J. Tejada, Y. Xin, G. F. Sun, and K. W. Wong, Phys. Rev. B 52, 1325 (1995).

    Google Scholar 

  21. M. E. McHenry, M. P. Maley, E. L. Venturini, and D. L. Ginley, Phys. Rev. B 39, 4784 (1989); M. Földeaki, M. E. McHenry, and R. C. O'Handley, Phys. Rev. B 39, 11475 (1989).

    Google Scholar 

  22. M. V. Feigel'man, V. B. Geshkenbein, and A. I. Larkin, Physica C 167, 177 (1990); V. M. Vinokur, P. H. Kes, and A. E. Koshelev, Physica C 168, 29 (1990).

    Google Scholar 

  23. L. L. Daemen, L. N. Bulaevskii, M. P. Maley, and J. Y. Coulter, Phys. Rev. Lett. 70, 1167 (1993); Phys. Rev. B 47, 11291 (1993); M. C. Hellerqvist, S. Ryu, L. W. Lombardo, and A. Kapitulnik, Physica C 230, 170 (1994).

    Google Scholar 

  24. D. R. Harshman and A. P. Mills, Jr., Phys. Rev. B 45, 10684 (1992).

    Google Scholar 

  25. O. Laborde, P. Monceau, M. Potel, J. Padiou, P. Gougeon, J. C. Levet, and H. Noel, Physica C 162–164, 1619 (1989).

    Google Scholar 

  26. C. W. Hagen and R. Griessen, Phys. Rev. Lett. 65, 1284 (1990); R. Griessen, J. G. Lensink, T. A. M. Schröder, and B. Dam, Cryogenics 30, 563 (1990).

    Google Scholar 

  27. P. Chaddah and K. V. Bhagwat, Phys. Rev. Lett. 65, 1283 (1990).

    Google Scholar 

  28. Z. Q. Yu and W. J. Yeh, Physica C 273, 328 (1997).

    Google Scholar 

  29. R. M. Hazen, L. W. Finger, R. J. Angel, C. T. Prewitt, N. L. Ross, C. G. Hadidiacos, P. J. Heaney, D. R. Veblen, Z. Z. Sheng, A. El Ali, and A. M. Hermann, Phys. Rev. Lett. 60, 1657 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago, A.G., Testa, A.M., Zhang, X.X. et al. Effect of Dissipation on Quantum Tunneling of Vortices in Tl2Ba2Ca2Cu3O10+δSuperconductors. Journal of Superconductivity 11, 297–303 (1998). https://doi.org/10.1023/A:1022648304702

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022648304702

Navigation