Skip to main content
Log in

Thermodynamics of protonation of AMP, ADP, and ATP from 50 to 125°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interaction of adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), and adenosine 5′-triphosphate (ATP) ions with protons in aqueous solution has been studied calorimetrically from 50 to 125°C and 1.52 MPa. At each temperature, the reaction of acidic AMP with tetramethylammonium hydroxide was combined with the heat of ionization for water to obtain the enthalpy of protonation of AMP, while the reactions of HCl with deprotonated tetramethylammonium salts of ADP and ATP were used to obtain the enthalpies of protonation of ADP and ATP. Equilibrium constant K, enthalpy change ΔHo, entropy change ΔSo, and heat capacity change ΔC op values were calculated for the stepwise protonation reactions as a function of temperature. The reactions involving the first protonation of AMP, ADP, and ATP and the third protonation of ADP and ATP were endothermic over the temperature range studied, while that involving the second protonation is exothermic for AMP and ADP, but is exothermic below 100°C and endothermic at 125°C in the case of ATP. Consequently, log K values for the first and third protonation reactions (phosphate groups) increase while those for the second protonation reaction (N1-adenine) decrease in the cases of AMP and ADP and go through a minimum in the case of ATP as temperature increases. The ΔHo values for all protonation reactions increase with temperature. The magnitude and the trend for the ΔHo, ΔSo, and ΔC op values with temperature are discussed in terms of solvent-solute interactions. The magnitude of the ΔC op values for the second protonation is consistent with little interaction between the phosphate ion and the protonated N1 site of the adenine moiety in AMP, but indicates moderate interaction between these groups in ADP, and strong interaction in ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Eichhorn and L. G. Marzilli,Metal Ions in Genetic Information Transfer, (Vol. 3 of Advances in Inorganic Biochemistry, Elsevier, New York, 1981).

    Google Scholar 

  2. V. Tunnicliffe,Am. Sci. 80:336 (1992).

    Google Scholar 

  3. Origins of Life and Evolution of the Biosphere,22:1 (1992). Special Issue: Marine Hydrothermal Systems and the Origin of Life, N.G. Holm, ed, 241 pp.

  4. R. Phillips,Chem. Rev. 66:501 (1966).

    PubMed  Google Scholar 

  5. R. M. Izatt, J. J. Christensen, and J. H. Rytting,Chem. Rev. 71:439 (1971).

    PubMed  Google Scholar 

  6. R. M. Smith, A. E. Martell and Y. Chen,Pure Appl. Chem. 63:1015 (1991).

    Google Scholar 

  7. M. M. Taqui Khan, and A. E. Martell,J. Am. Chem. Soc. 89:5585 (1967).

    Google Scholar 

  8. J. Galea, R. Beccaria, and G. Ferroni,Electrochim. Acta. 23:647 (1978).

    Google Scholar 

  9. J. J. Christensen, L. D. Hansen, and R. M. Izatt,Handbook of Proton Ionization Heats and Related Thermodynamic Quantities (John Wiley & Sons, New York, 1976).

    Google Scholar 

  10. H. Sigel,Eur. J. Biochem. 163:353 (1987).

    PubMed  Google Scholar 

  11. M. L. Antonelli, S. Balzamo, V. Carunchio, E. Cernia, and R. Purrello,J. Inorg. Biochem. 32:153 (1988).

    PubMed  Google Scholar 

  12. M. E. Tate,Biochem. J. 195:419 (1981).

    PubMed  Google Scholar 

  13. S. S. Massoud, R. Tribolet, and H. Sigel,Eur. J. Biochem. 187:387 (1990).

    PubMed  Google Scholar 

  14. S. M. Shanbhag and G. R. Choppin,Inorg. Chim. Acta 138:187 (1987).

    Google Scholar 

  15. M. V. Rekharshii, S. A. Tishchenko, A. M. Egorov, and G. L. Galchenko,Vestn. Mosk. Univ., Ser. 2: Khim. 29:46 (1988).

    Google Scholar 

  16. R. N. Goldberg and Y. B. Tewari,Biophys. Chem. 40:241 (1991).

    Google Scholar 

  17. R. A. Alberty,J. Am. Chem. Soc. 91:3899 (1969).

    Google Scholar 

  18. G. A. Walker, S. C. Bhatia, and J. H. Hall, Jr.,J. Am. Chem. Soc. 109:7629 (1987).

    Google Scholar 

  19. Y. Kitaoka,J. Chromatography 168:241 (1979).

    Google Scholar 

  20. S. Neidle, W. Kuhlbrandt, and A. Achari,Acta Crystallogr. B32:1850 (1976).

    Google Scholar 

  21. M. Matthies and G. Zundel,J. Chem. Soc. Perkin II:1824 (1977).

    Google Scholar 

  22. H. A. Tajmir-Riahi, M. J. Bertrand, and T. Theophanides,Can. J. Chem. 64:960 (1986).

    Google Scholar 

  23. H. A. Tajmir-Riahi,Biochimica et Biophys. Acta 1087:49 (1990).

    Google Scholar 

  24. J. J. Christensen and R. M. Izatt,J. Phys. Chem. 66:1030 (1962).

    Google Scholar 

  25. M. Cohn and T. R. Hughes, Jr.,J. Biol. Chem. 235:3250 (1960).

    PubMed  Google Scholar 

  26. S. Biagnini, M. Casu, A. Lai, R. Caminiti, and G. Crisponi,J. Chem. Phys. 93:461 (1985).

    Google Scholar 

  27. S. E. Gillespie, J. L. Oscarson, R. M. Izatt, and P. Wang,Thermochim. Acta. (in press).

  28. R. M. Izatt, J. L. Oscarson, S. E. Gillespie, and X. Chen,Determination of Thermodynamic Data for Modeling Corrosion. Volume 4: Chloride Ion Interaction with Magnesium, Calcium, and Hydrogen Ions at 250–325°C EPRI Report NP-5708, (Electric Power Research Institute, Palo Alto, CA, 1992).

    Google Scholar 

  29. A. R. Parkinson, R. J. Balling, and J. C. Free,Proc. ASME Int. Computers in Eng. Conf. (Las Vegas, NV, Aug. 1984).

  30. H. Sigel,CHIMIA 41:11 (1987).

    Google Scholar 

  31. R. Tribolet and H. Sigel,Biophys. Chem. 27:119 (1987).

    PubMed  Google Scholar 

  32. K.H. Scheller, F. Hofstetter, P. R. Mitchell, B. Prijs, and H. Sigel,J. Am. Chem. Soc. 103:247 (1981).

    Google Scholar 

  33. L.G. Hepler,J. Phys. Chem. 61:1426 (1957).

    Google Scholar 

  34. R. M. Izatt, S. E. Gillespie, J. L. Oscarson, P. Wang, J. A. R. Renuncio, and C. Pando,J. Solution Chem. 23:449 (1994).

    Google Scholar 

  35. W. L. Marshall and E. U. Franck,J. Phys. Chem. Ref. Data 10:295 (1981).

    Google Scholar 

  36. R. M. Izatt, J. L. Oscarson, S. E. Gillespie, X. Chen, P. Wang, and G.D. Watt,Pure Appl. Chem. (in press).

  37. J. L. Oscarson, S. E. Gillespie, J. J. Christensen, R. M. Izatt, and P. R. Brown,J. Solution Chem. 17:865 (1988).

    Google Scholar 

  38. J. L. Oscarson, R. M. Izatt, P. R. Brown, Z. Pawlak, S.E. Gillespie, and J. J. Christensen,J. Solution Chem. 17:841 (1988).

    Google Scholar 

  39. G.H. Haggis, J.B. Hasted, and T.J. Buchanan,J. Chem. Phys. 20:1452 (1952).

    Google Scholar 

  40. W. T. Lindsay, Jr.,The ASME Handbook on Water Technology for Thermal Power Systems, P. Cohen, ed. (The American Society of Mechanical Engineers, New York, 1989) Chap. 7.

    Google Scholar 

  41. J. W. Cobble and S. W. Lin,The ASME Handbook on Water Technology for Thermal Power Systems, P. Cohen, ed. (The American Society of Mechanical Engineers, New York, 1989), Chap. 8.

    Google Scholar 

  42. R.M. Izatt, J.L. Oscarson, S.E. Gillespie, H. Grimsrud, J.A.R. Renuncio, and C. Pando,Biophys. J. 61:1394 (1992).

    Google Scholar 

  43. S. E. Gillespie, J. L. Oscarson, R. M. Izatt. P. Wang, J. A. R. Renuncio, and C. Pando,J. Solution Chem. (submitted).

  44. T. Glonek,Int. J. Biochem. 24:1533 (1992).

    PubMed  Google Scholar 

  45. A.P. Sarvazyan, V.A. Buckin, and P. Hemmes,J. Phys. Chem. 84:692 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oscarson, J.L., Wang, P., Gillespie, S.E. et al. Thermodynamics of protonation of AMP, ADP, and ATP from 50 to 125°C. J Solution Chem 24, 171–200 (1995). https://doi.org/10.1007/BF00972840

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972840

Key Words

Navigation